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Abstract. We determine the central extensions of a whole family of Lie algebras, obtained
by the method of graded contractions fromso(N + 1), N arbitrary. All the inhomogeneous
orthogonal and pseudo-orthogonal algebras are members of this family, as well as a large number
of other non-semisimple algebras, all of which have at least a semidirect structure (in some cases
two or more). The dimensions of their second cohomology groupsH 2(G,R) and the explicit
expression of their central extensions are given.

1. Introduction

This paper is devoted to investigating the second cohomology groups of a large class of
algebras, the so-called orthogonal Cayley–Klein (CK) family of algebras. These algebras
may be obtained by a sequence of ordinary contractions starting fromso(N + 1) or from
so(p, q) and can be described by using the alternative method of graded contractions [1, 2].

The problem of finding the cohomology groups for this family of algebras is primarily
of mathematical interest but it is not devoid of a physical one since the CK algebras include
all kinematical algebras of physical relevance. There are (at least) three main areas where
central extensions play a role in physics. First, the existence of a non-trivial cohomology
group is associated with projective representations, a fact discussed first in general by
Bargmann [3] but which has its roots in the work of Weyl [4] and in the classic paper
of Wigner [5]. Second, in the Kirillov–Kostant–Souriau theory, homogeneous symplectic
manifolds under a group appear as the orbits of the coadjoint representation of either the
group itself or of a central extension. Third, if a group is considered as the invariance group
of a given physical theory, the most general Lagrangian which leads to invariant equations
of motion is not necessarily a strictly invariant Lagrangian, but a quasi-invariant one; again
this is linked to the central extensions of the group [6].

The second cohomology group is trivial for semisimple Lie algebras. For some specific
non-semisimple algebras it has also been studied (e.g. for Euclidean, Poincaré and Galilei
algebras inN dimensions). It is well known [3, 7] that the Galilei group admits projective
representations and the Lie algebra statementH 2(G(3+ 1),R) = R has its counterpart in
the fact that the group can be centrally extended byU(1) (the phase group involved in
the ray [3] representations). The cohomology of these algebras in low dimensions is also
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known. However, some recent rediscoveries (as for the(2+1) Galilei algebra) suggest that
part of these results have become buried in the literature.

Moving from the semisimpleso(p, q) algebras by successive contractions it is
found that, as a rule, the cohomology groups of the resulting algebras become larger.
However, inhomogeneity is notper se a sufficient condition for the existence of non-
trivial cohomology, as exhibited by the contrast between the 10-dimensional Galilei and
Poincaŕe algebras. Moreover, as far as we know, there is no systematic study of the second
cohomology groups covering a large family of algebras, so that the present study may help
to describe the relationship between cohomology and contractions. It should be noted,
however, that the dimension of the Lie algebra cohomology groups does not need to be
the same as the dimension of theU(1)-valued group cohomology. This is because when
moving from the Lie algebras to Lie groups the topology of the groups comes into play and
this may reduce the dimension of the different cohomology groups (for a general statement
see [3] and [8]). In Bargmann’s terminology [3] (see [9] for an outlook) it is not always
possible to extend a local exponent to the whole group (it is possible if the group is simply
connected, hence the role of the universal covering group).

This paper is organized as follows. The algebras in the orthogonal CK family are
introduced in section 2, as well as the way the relevant kinematical Lie algebras are included
in it. Section 3 gives a reasonably complete account of the procedure used to find the
central extensions of the orthogonal CK algebras (including the characterization of trivial
and equivalent extensions). This section may be omitted completely if the reader is not
interested in the computational details. In section 4 we state the final solution and provide
a method to compute the dimension of the second cohomology group for any CK algebra
in any dimension. The method is illustrated in section 5, where all central extensions for
the lower dimensional CK orthogonal algebras are explicitly described, and some comments
on thegroup cohomology for the CK quasi-orthogonal groups are made. Some concluding
remarks and prospects for future work close the paper.

2. The CK family of quasi-orthogonal algebras as graded contractions ofso(N + 1)

Let us first introduce the set of algebras we are going to deal with in connection with
graded-contraction theory [1, 2], which is a convenient tool for our aims in this paper.
The starting point is the real Lie algebraso(N + 1) with N(N + 1)/2 generators�ab
(a, b = 0, 1, . . . , N, a < b). Its non-zero Lie brackets are

[�ab,�ac] = �bc [�ab,�bc] = −�ac [�ac,�bc] = �ab a < b < c (2.1)

(commutators involving four different indices are zero). This Lie algebra can be endowed
with a fine grading groupZ⊗N2 . The corresponding graded contractions ofso(N + 1)
constitute a large set of Lie algebras, depending on 2N −1 real contraction parameters [10],
which include from the simple Lie algebrasso(p, q) (when all parameters are different
from zero) to the Abelian algebra in the opposite case, when all parameters are equal
to zero. Properties associated with the simplicity of the algebra are lost at some point
beyond the simple algebras in the contraction lattice, yet there exists a particular subset or
family of these graded contractions, nearer to the simple ones, which essentially preserve
these properties and may therefore be called [11] ‘quasi-simple’ algebras. This family [12]
encompasses the pseudo-orthogonal algebras (theBl andDl Cartan series) as well as their
nearest non-simple contractions; collectively, all these algebras are calledquasi-orthogonal.
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In this paper we will deal exclusively with this family† to be defined precisely below. Its
members are called CK algebras since they are exactly the family of motion algebras of
the geometries of a real space with a projective metric in the CK sense [13, 14]. If the
graded contraction procedure is implicitly assumed, the algebras in the CK family may be
referred to as contractions of the compactso(N + 1), although in this sentence the word
‘contraction’ must be adequately understood and the compactness is lost.

The set of CK Lie algebras depends onN real coefficientsω1, . . . , ωN which codify in
a convenient way the information on the Lie algebra structure. In terms of

ωab := ωa+1ωa+2 . . . ωb (a, b = 0, 1, . . . , N, a < b) ωaa := 1, (2.2)

for which we remark the relations

ωac = ωabωbc a 6 b 6 c ωa = ωa−1a a = 1, . . . , N, (2.3)

the independent non-vanishing commutation relations in the contracted CK Lie algebra are
given (cf (2.1)) by

[�ab,�ac] = ωab�bc [�ab,�bc] = −�ac [�ac,�bc] = ωbc�ab
a < b < c. (2.4)

This CK or quasi-orthogonal algebra will be denoted assoω1,...,ωN (N + 1), making explicit
the parametersωi . This has a (vector) representation by(N + 1)× (N + 1) real matrices,
given by

�ab = −ωabeab + eba (2.5)

whereeab is the matrix with a single non-zero entry, 1, in the rowa and columnb. For
ω1 = · · · = ωN = 1, we recover the compactso(N + 1) algebra. Since each coefficientωa
may take positive, negative or zero values, and by means of a simple rescaling of the initial
generators it can be reduced to the standard values of 1,−1 or 0, it is clear that the family
soω1,...,ωN (N + 1) includes 3N Lie algebras. Some of these can be isomorphic; for instance,

soω1,ω2,...,ωN−1,ωN (N + 1) ' soωN ,ωN−1,...,ω2,ω1(N + 1). (2.6)

The family soω1,...,ωN (N +1) of CK algebras includes algebras of physical interest [15].
The structure of these algebras can be characterized by two statements.
• When all constantsωa 6= 0, the algebrasoω1,...,ωN (N + 1) is a simple (barring the

specialN = 3 case) real Lie algebra in the Cartan seriesBl or Dl , and it is isomorphic to
a pseudo-orthogonal algebraso(p, q) with p + q = N + 1.
• If a constantωa = 0, for a = 1, . . . , N , the resulting algebrasoω1,...,ωa=0,...,ωN (N + 1)

has the semidirect structure (see equation (2.4))

soω1,...,ωa−1,ωa=0,ωa+1,...,ωN (N + 1) ≡ t � (soω1,...,ωa−1(a)⊕ soωa+1,...,ωN (N + 1− a)) (2.7)

wheret is an Abelian subalgebra dimt = a(N + 1− a) and the remaining subalgebra is a
direct sum. The three subalgebras appearing in (2.7) are generated by

t = 〈�ij ; i = 0, 1, . . . , a − 1; j = a, a + 1, . . . , N〉
soω1,...,ωa−1(a) = 〈�ij ; i, j = 0, 1, . . . , a − 1〉
soωa+1,...,ωN (N + 1− a) = 〈�ij ; i, j = a, a + 1, . . . , N〉.

(2.8)

† The study of the cohomology of the general graded contractions ofso(N +1) could be performed similarly; we
shall nevertheless restrict ourselves to the CK family. This means, for instance, that the ‘completely contracted’
(and hence Abelian) algebra, for which dimH 2(G,R) = (dimG

2

)
, is not included.
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If either a = 1 or a = N , then the direct sum in (2.7) has a single summand. This
decomposition as a semidirect sum is true irrespective of whether the remaining constants
ωi are equal to zero or not.

The structure behind this decomposition can be described visually by setting the
generators in a triangular array. The generators spanning the subspacet are those inside
the rectangle, while the subalgebrassoω1,...,ωa−1(a) and soωa+1,...,ωN (N + 1− a) correspond
to the two triangles to the left and below the rectangle respectively,

�01 �02 . . . �0a−1 �0a �0a+1 . . . �0N

�12 . . . �1a−1 �1a �1a+1 . . . �1N

. . .
...

...
...

...

�a−2a−1 �a−2a �a−2a+1 . . . �a−2N

�a−1a �a−1a+1 . . . �a−1N

�a a+1 . . . �aN
. . .

...

�N−1N .

The Abelian rectangle is reduced to the row�0i , i = 1, . . . , N for ω1 = 0 or to the column
�iN , i = 0, 1, . . . , N − 1 whenωN = 0.

Let us consider some specially relevant algebras in the CK family. Allω’s are assumed
to be different from zero, unless otherwise explicitly stated.

(1) ωa 6= 0 ∀a. Here soω1,...,ωN (N + 1) is a pseudo-orthogonal algebraso(p, q) with
p + q = N + 1. The matrix representation (2.5) of this algebra generates a group of linear
transformations onN + 1 real variables which leave invariant a quadratic formg, with
matrix diag(1, ω01, ω02, . . . , ω0N). The signature of this quadratic form is the number of
positive and negative terms in the sequence(1, ω1, ω1ω2, . . . , ω1ω2 . . . ωN) so that eachωi
governs the relative sign of two consecutive diagonal elements in the metric matrix, the
element whereωi appears for the first time and the previous one.

(2) ω1 = 0. The so0,ω2,...,ωN (N + 1) algebras are the usual pseudo-orthogonal
inhomogeneous ones, with a semidirect sum structure given by

so0,ω2,...,ωN (N + 1) ≡ tN � soω2,...,ωN (N) ≡ iso(p, q) p + q = N
where soω2,...,ωN (N) acts ontN through the vector representation. The Euclidean algebra
iso(N) appears once with(ω1, ω2, . . . , ωN) = (0, 1, . . . ,1). The Poincaŕe algebra
iso(N − 1, 1) is reproduced several times, e.g. for(ω1, ω2, . . . , ωN) = (0,−1, 1, . . . ,1).

(3) ω1 = ω2 = 0. These algebras have two different semidirect sum structures (cf (2.7)).
The one associated with the vanishing ofω1 is

tN � soω2=0,ω3,...,ωN (N)

while the structure associated with the vanishing ofω2 is

t2N−2� (soω1=0(2)⊕ soω3,...,ωN (N − 1)).

The first structure can also be seen as a ‘twice-inhomogeneous’ pseudo-orthogonal algebra

so0,0,ω3,...,ωN (N + 1) ≡ tN � (tN−1� soω3,...,ωN (N − 1)) ≡ iiso(p, q) p + q = N − 1.

(2.9)

For example, the Galilean algebraiiso(N − 1) appears forωi = (0, 0, 1, . . . ,1). This
pattern continues forω1 = ω2 = ω3 = 0, etc.

(4) ωN = 0. Here the algebras have a semidirect sum structure:

soω1,ω2,...,ωN−1,0(N + 1) ≡ t ′N � soω1,ω2,...,ωN−1(N) ≡ i ′so(p, q) (2.10)
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where nowso(p, q) acts ont ′N through the contragredient of the vector representation, hence
the notation with a prime. Of course these algebras are isomorphic to the ones described in
(2) as above (cf (2.6)). A pattern similar to that in (3) occurs for the casesωN = ωN−1 = 0,
etc.

(5) ω1 = ωN = 0. They have two different semidirect sum splittings. The first is

so0,ω2,...,ωN−1,0(N + 1) ≡ tN � (t ′N−1� soω2,...,ωN−1(N − 1)) ≡ ii ′so(p, q) (2.11)

wherep + q = N − 1; so(p, q) acts ont ′N−1 through the contragredient of the vector
representation whilei ′so(p, q) acts ontN through the vector representation. The other is:

so0,ω2,...,ωN−1,0(N + 1) ≡ t ′N � (tN−1� soω2,...,ωN−1(N − 1)) ≡ i ′iso(p, q). (2.12)

One example of (2.11) isii ′so(3), the Carroll algebra in(3+ 1) dimensions [16], which
corresponds to(0, 1, 1, 0).

(6) ωa = 0, a 6= 1, N . The structure of these algebras can be schematically
described astr � (so(p, q) ⊕ so(p′, q ′)) (see [17]). In particular, forω2 = 0 we have
t2N−2 � (so(p, q) ⊕ so(p′, q ′)) with p + q = 2 andp′ + q ′ = N − 1, which include
for q ′ = 0 the oscillating and expanding Newton–Hooke algebras [16] associated with
(1, 0, 1, . . . ,1) and(−1, 0, 1, . . . ,1), respectively.

(7) The fully contracted case in the CK family corresponds to setting all constants
ωa = 0. This is the so-called flag algebraso0,...,0(N + 1) ≡ i . . . iso(1) [11].

The kinematical algebras associated with different models of spacetime [16] belong to
the family of CK algebras, and this indeed provides one of the strongest physical motivations
to study this family of algebras; in relation with the graded-contraction point of view, see
also [18] and [10].

3. Central extensions of the CK algebras

Our aim in this section is to obtain the general solution to the problem of finding all central
extensions for all the CK algebras and in arbitrary dimensions.

We write the independent commutation relations ofsoω1,...,ωN (N + 1) (2.4) as

[�ab,�cd ] =
N∑

i,j=0
i<j

C
ij

ab,cd�ij (3.1)

where, as before, in any�ef , e < f is always assumed. The four types of structure
constants in (2.4) are given by

C
ij

ab,ac = δibδjc ωab C
ij

ab,bc = −δiaδjc C
ij

ac,bc = δiaδjbωbc a < b < c (3.2)

together withCijab,cd = 0 if all a, b, c, d are different.
Any central extensionsoω1,...,ωN (N + 1) of the algebrasoω1,...,ωN (N + 1) by the one-

dimensional algebra of generator4 will have generators(�ab,4) and commutators:

[�ab,�cd ] =
N∑

i,j=0
i<j

C
ij

ab,cd�ij + αab,cd4 [4,�ab] = 0 (3.3)

where the extension coefficients to be determinedαab,cd (‘central charges’), must be
antisymmetric in the interchange of pairsab andcd,

αcd,ab = −αab,cd (3.4)
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and must fulfil the conditions

N∑
i,j=0
i<j

(C
ij

ab,cdαij,ef + Cijcd,ef αij,ab + Cijef,abαij,cd) = 0 (3.5)

which follow from the Jacobi identity. The ‘extension coefficients’ are the coordinates
(α(�ab,�cd) = αab,cd) of the antisymmetric rank-two tensorα which is the two-cocycle
of the specific extension being considered and (3.5) is the two-cocycle condition for the
Lie-algebra cohomology. The classes of non-trivial two-cocycles associated with the tensors
α determine the dimension of the second cohomology groupH 2(G,R). The rest of this
section will be devoted to characterizing first the vector space of all tensorsα satisfying
conditions (3.4) and (3.5) for the CK algebrasoω1,...,ωN (N + 1). Second, the question of
the possible equivalence of two extensions given by two tensorsα will be addressed and
solved. The reader who is not interested in the details of the calculation procedure may
skip the rest of this section; its results are summarized in theorem 4.1.

3.1. Setting up the problem: Jacobi identities

The antisymmetry ofαab,cd will be automatically taken into account by considering as
independent coefficients only thoseαab,cd with a 6 c andb < d whena = c (the conditions
a < b andc < d are always assumed).

The first step consists of solving the
(
(N+1)N/2

3

)
(see below) Jacobi identities (3.5)

understood as equations in the coefficientsαab,cd . There is one equation for each possible
set of three index pairsab, cd, ef in (3.5) and looking at how many of these indices are
differentwe can group all Jacobi identities into four classes.
• One equation for the only possible set(ab, ac, bc) of six indices made up from three

different indices (permutations will lead to the same Jacobi identity).
• 16 equations, one for each possible set of six indices made up from four different

indices

(ab, ac, ad), (ab, ac, bd), (ab, bc, ad), (ab, ac, cd), (ac, ad, bc), (ab, ad, cd),

(ac, ad, bd), (ab, bc, bd), (ab, bc, cd), (ac, bc, bd), (ab, bd, cd), (ad, bd, bc),

(ac, bc, cd), (ac, bd, cd), (ad, bc, cd), (ad, bd, cd).

(3.6)

• 30 equations, one for each possible set of six indices made up from five different
indices

(ab, ac, de), (ab, ad, ce), (ab, ae, cd), (ac, ae, bd), (ac, ad, be), (ad, ae, bc),

(ab, bc, de), (ab, bd, ce), (ab, be, cd), (ad, bc, be), (ac, bd, be), (ae, bc, bd),

(ab, cd, ce), (ac, bc, de), (ad, bc, ce), (ae, bc, cd), (ac, bd, ce), (ac, be, cd),

(ab, cd, de), (ac, bd, de), (ae, bd, cd), (ad, bc, de), (ad, bd, ce), (ad, be, cd),

(ab, ce, de), (ac, be, de), (ae, bc, de), (ad, be, ce), (ae, be, cd), (ae, ce, bd).

(3.7)

• 15 equations, one for each possible set of six indices(ab, cd, ef ), (ab, ce, df ), . . . ,

made up from six different indices.
The following relation, where it is understood that

(
m

n

) = 0 if m < n, checks the above
splitting:(
(N + 1)N/2

3

)
= 1

(
N + 1

3

)
+ 16

(
N + 1

4

)
+ 30

(
N + 1

5

)
+ 15

(
N + 1

6

)
. (3.8)
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Now we write explicitly the above equations. To begin with, the equation involving
only three different indices as well as the 15 equations with six different indices are easily
seen to be trivially satisfied due to (3.4) or to the fact thatC

ij

ab,cd = 0 whenever(ab, cd)
are all different indices. The 16 Jacobi identities for four indicesa < b < c < d lead to 10
equations, written here in bulk (later we shall write these equations in a neater way):

αab,ad = −ωabαbc,cd αac,ad = ωabαbc,bd
αad,cd = −ωcdαab,bc αad,bd = ωcdαac,bc
αac,cd = αab,bd ωcdαab,ac = ωabαbd,cd
αac,bd = −ωbcαab,cd αad,bc = 0

ωacαab,cd = 0 ωbdαab,cd = 0.

(3.9)

(The 16 equations involve several pairsωα = 0 andωω′α = 0; in these cases the second
is clearly a consequence of the first, and may therefore be discarded.) On their part, the 30
Jacobi identities for five indicesa < b < c < d < e, give rise to sixteen equations:

αab,ce = 0

αac,be = αac,de = 0

αad,be = αad,ce = 0

αae,bd = αae,bc = αae,cd = 0

ωbcαab,de = 0 ωcdαab,de = 0 ωdeαab,cd = 0

ωdeαac,bd = 0 ωdeαad,bc = 0

ωabαbc,de = 0 ωabαbd,ce = 0 ωabαbe,cd = 0.

(3.10)

3.2. Solving strategy

The structure behind equations (3.9) and (3.10) is not readily apparent. In order to unveil
this structure and solve the central extension problem, we shall;

(1) sort out all extension coefficients (coordinates ofα) into disjoint classes,
(2) group all equations as related to the former classification and isolate coefficients

which can be simply expressed in terms of the remaining ones,
(3) state the form of the general solution in terms of basic extension coefficients from

which all others are derived, but which still may be subjected to some additional relations,
and

(4) analyse when an extension is trivial (or when two extensions can be equivalent).
It is convenient to put the coordinates of the genericα into threetypes.
Type I. Coefficientsαab,bc with three different indicesa < b < c with the middle index

common to both pairs.
Types IIF/IIL. Coefficientsαab,ac/αac,bc, with three different indicesa < b < c where

the first/last index is common to both pairs.
Type III. Coefficientsαab,cd with four different indicesa < b, a < c < d.
Before studying them below, it may be worthwhile advancing now that, for all CK

algebras, those of type I will always correspond to two-coboundaries. Those of type IIF/IIL
will determine two-cocycles (which may be trivial) which result from the contraction of
two-coboundaries through the pseudoextension mechanism [19, 20] and those of type III
will determine non-trivial two-cocycles which are not generated by contraction from two-
coboundaries (i.e. different from those in IIF/IIL).

The Jacobi equations (3.5) include a block of relations such as (3.9) for each set of
four different indicesa < b < c < d and a group of equations (3.10) for each set offive
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indicesa < b < c < d < e. In order to deal with these equations simultaneously, it will
be convenient to start with any set of five indices and to consider jointly equations (3.10)
and five copies of equations (3.9), one for every choice of four indices out of the five
abcde, namelyabcd, abce, abde, acde and bcde. The complete set of equations thus
obtained involves the 45 central extension coefficientsαab,cd , αab,ce, . . . with indices in the
set{a, b, c, d, e} (there are

(5
3

) = 10 type I coefficients, 10+ 10 type IIF+ IIL coefficients
and 15 (see (3.10)) of type III). We now write all equations (assuminga < b < c < d < e)
and group them in a convenient way. Out of these 45 coefficients, 30 are either equal to zero
or can be expressed by simple relations in terms of the remaining extension coefficients.
These 30 coefficients are calledabcde-derived, and are related to the remaining 15abcde-
primary coefficients by the equations below, the left/right-hand sides of which involve only
derived/primary coefficients:

I/I αac,cd = αab,bd αac,ce = αab,be αad,de = αab,be αbd,de = αbc,ce
(3.11)

IIF/IIF αac,ad = ωabαbc,bd αad,ae = ωacαcd,ce αbd,be = ωbcαcd,ce (3.12)

IIL /IIL αae,be = ωceαac,bc αad,bd = ωcdαac,bc αbe,ce = ωdeαbd,cd (3.13)

IIF/I αab,ad = −ωabαbc,cd αab,ae = −ωabαbc,ce
αac,ae = −ωacαcd,de αbc,be = −ωbcαcd,de (3.14)

IIL /I αad,cd = −ωcdαab,bc αae,ce = −ωceαab,bc
αae,de = −ωdeαab,bd αbe,de = −ωdeαbc,cd (3.15)

III /III αac,bd = −ωbcαab,cd αbd,ce = −ωcdαbc,de (3.16)

III

αab,ce = αac,be = αae,bc = 0 αad,bc = 0

αae,bd = αad,be = 0 αbe,cd = 0

αac,de = αad,ce = αae,cd = 0.

(3.17)

Sorted out by their type, the 15abcde-primary coefficients are:

I αab,bc αab,bd αab,be αbc,cd αbc,ce αcd,de

IIF αab,ac αbc,bd αcd,ce

IIL αac,bc αbd,cd αce,de

III αab,cd αab,de αbc,de.

(3.18)

These primary coefficients are themselves constrained by the relations:

IIF/IIL ωcdαab,ac = ωabαbd,cd ωdeαbc,bd = ωbcαce,de (3.19)

III

ωacαab,cd = 0 ωbdαab,cd = 0 ωdeαab,cd = 0

ωbcαab,de = 0 ωcdαab,de = 0

ωabαbc,de = 0 ωbdαbc,de = 0 ωceαbc,de = 0

(3.20)

which follow from (3.9) and (3.10). Note that since theω’s may be zero, we cannot express
any of these primary coefficients in terms of the others.

We have indicated the type of each group of coefficients, by the corresponding symbol
in each line, e.g. the rows in (3.18) correspond to the three types (I, IIF/IIL, III) as given
above. Summing up, the 15abcde-primary extension coefficients are as follows.
• Those type I with the first pairabcde-contiguous (i.e. the indices in the first pair are

consecutive in the ordered sequenceabcde).
• Those type IIF/L with the first/last pair of indicesabcde-contiguous and threeabcde-

consecutive indices (of course, the later condition implies the former).
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• Type III with two abcde-contiguous pairs.
All others areabcde-derived.

3.3. The basic extension coefficients

The next step in this process is to consider the above results for all possible numerical
values of the five indicesabcde since these numerical values appear as the indices labelling
the coordinates of the tensorα. Consider, for instance, the coordinateα13,14 in a case with,
say,N = 8. This is a 13457-primary one, which means that it cannot be expressed in terms
of another coefficient with indices taken from the set 13457. However, the same coefficient
appears as a derived one for the set of indices 12345, because the first index pair 13 are
not contiguous indices in the set 12345. It is clear that only those coefficients with the
form of (3.18) forall choices of five indices will be the really primary, or basic, ones; all
other can be ultimately derived in terms of these. We shall call thembasic coefficientsof
the extension and introduce a notation which highlights their role in the extensions. By
checking the former list ofabcde-primary extension coefficients, we readily conclude that

Proposition 3.1.The basic coefficients of the extension are as follows.
• Type I with the first pair of indices contiguous

τac := αa a+1,a+1c a = 0, 1, . . . , N − 2 c = a + 2, . . . , N N > 2. (3.21)

We remark that the indices inτac cannot be consecutive; there areN(N − 1)/2 basic type
I τac extension coefficients.
• Type IIF/IIL with three consecutive indices (and therefore with the first/last pair of

contiguous indices):

αFa+1a+2 := αa a+1,a a+2 a = 0, 1, . . . , N − 2 N > 2. (3.22)

αLa−2a−1 := αa−2a,a−1a a = 2, . . . , N N > 2. (3.23)

There are(N − 1) basic type II extension coefficients for each subtype IIF and IIL.
• Type III with two contiguous pairs of indices:

βb+1d+1 := αb b+1,d d+1 b = 0, 1, . . . , N − 3 d = b + 2, . . . , N − 1 N > 3.

(3.24)

Theseβ extension coefficients must have two not consecutive indices, and the index 0 cannot
appear in anyβ. The possible number of these extension coefficients is(N − 1)(N − 2)/2.

These basic coefficients are still not independent and must fulfil the Jacobi relations
(3.19) and (3.20). In particular, for basic type II coefficients, (3.19) now reads:

IIF/IIL ωa+3α
F
a+1a+2 = ωa+1α

L
a+1a+2 a = 0, . . . , N − 3 (3.25)

and (3.20) for basic type III coefficients reduces to either

ωβb+1b+3 = 0 for ω = ωb, ωb+1ωb+2, ωb+2ωb+3, ωb+4 (3.26)

where forb = 0/b = N − 3 the first/last conditionωbβ = 0/ωb+4β = 0 (which would read
ω0β = 0/ωN+1β = 0) is not present, or to

ωβb+1d+1 = 0 for ω = ωb, ωb+2, ωd, ωd+2 (3.27)

whereb + 1 andd + 1 are not next neighbours, with similar restrictions as before for the
extreme equations.
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The basic type II coefficients areαa a+1,a a+2 andαa+1a+3,a+2a+3. Both appear in the
extended commutators:

[�a a+1, �a a+2] = ωa+1�a+1a+2+ αa a+1,a a+24

[�a+1a+3, �a+2a+3] = ωa+3�a+1a+2+ αa+1a+3,a+2a+34
(3.28)

so both extension coefficients appear related to the generator�a+1a+2, which explains
the notationsαFa+1a+2 := αa a+1,a a+2 and αLa+1a+2 := αa+1a+3,a+2a+3 in (3.22) and
(3.23). Type II basic coefficients are grouped in asingle coefficient,αL01, (N − 2) pairs,
αF12, α

L
12, . . . , α

F
N−2N−1, α

L
N−2N−1 and anothersingle coefficient, αFN−1N , the single ones

appearing for the cases where the index pair does not have a predecessor or a successor.
Type III basic extension coefficientsαb b+1,d d+1 appear in the extended commutators,

[�bb+1, �d d+1] = αb b+1,d d+14. (3.29)

Let us comment on the process of finding the derived coefficients in terms of the
basic extension coefficients. For type I coefficients, the only constraint is equation (3.11),
which says that all type I coefficientsαab,bc with the sameac indices are simply equal;
this is αab,bc = αaa+1,a+1c = τac. Consider now the derived type IIF coefficients. They
must have three non-consecutive indices, and there are three possibilities, representatives
of which are the coefficientsαab,ad (whenab are contiguous butbd are not),αac,ad (when
ac are not contiguous butcd are) andαac,ae (when neitherac nor ce are contiguous). For
the first one, an equation in (3.14) givesαab,ad = −ωabαbc,cd and choosingc = b + 1
we obtainαab,ad = −ωabαb b+1,b+1d = −ωabτbd ; as in this caseb = a + 1 we obtain
αa a+1,ad = −ωa+1τa+1d for d = a + 3, . . . , N . For the second, one of equations (3.12)
with b = c − 1 givesαac,ad = ωa c−1αc−1c,c−1d ; now as hered = c + 1, and the extension
coefficient αc−1c,c−1d is equal toαFc c+1, we finally obtainαac,a c+1 = ωa c−1α

F
c c+1 for

c = a + 2, . . . , N − 1. In the third case, we use one of the equations in (3.14) with
d = c + 1 to obtain directlyαac,ae = −ωacαc c+1,c+1e = −ωacτce for c = a + 2, . . . , N − 2
ande = c + 2, . . . , N . A completely similar process gives the derived type IIL.

Finally, type III has a single class of derived coefficients which might be different
from zero: αac,bd whereab, bc and cd are contiguous pairs (so all fourabcd indices are
consecutive, saya a+1a+2a+3). These are given by equations (3.16) in term of the basic
ones asαa a+2,a+1a+3 = −ωa+1a+2αa a+1,a+2a+3 = −ωa+2βa+1a+3. All other non-basic type
III coefficients are necessarily equal to zero.

To sum up, forN = 2 there are no derived extension coefficients; for anyN > 3,
the complete list of derived extension coefficients is therefore given by the following
proposition.

Proposition 3.2.ForN > 3, the derived extension coefficients are as follows.
• Type I, with the first pair non-contiguous

αac,cd = τad a = 0, 1, . . . , N − 3 c = a + 2, . . . , N − 1 d = c + 1, . . . , N.

(3.30)

• Type IIF/IIL, with three non-consecutive indices. There are three possibilities,
according to whether the first and second indices or the second and third are or not
contiguous:

αa a+1,ad = −ωa+1τa+1d a = 0, 1, . . . , N − 3 d = a + 3, . . . , N
αac,a c+1 = ωa c−1α

F
c c+1 a = 0, 1, . . . , N − 3 c = a + 2, . . . , N − 1

αac,ae = −ωacτce a = 0, 1, . . . , N − 4 c = a + 2, . . . , N − 2
e = c + 2, . . . , N (hereN > 4)

(3.31)
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αa c+1,c c+1 = −ωc+1τac a = 0, 1, . . . , N − 3 c = a + 2, . . . , N − 1
αac,a+1c = ωa+2cα

L
a a+1 a = 0, 1, . . . , N − 3 c = a + 3, . . . , N

αae,ce = −ωceτac a = 0, 1, . . . , N − 4 c = a + 2, . . . , N − 2
e = c + 2, . . . , N (hereN > 4).

(3.32)

Type III, with at least a non-contiguous pair. Only those of the formαac,bd with abcd
consecutive are possibly different from zero, and are given by

αa a+2,a+1a+3 = −ωa+2 βa+1a+3 a = 0, 1, . . . , N − 3 (3.33)

all other non-basic type III extension coefficients are necessarily equal to zero.

It can be checked that for any choice of the extension coefficients (satisfying the
equations (3.25), (3.26) and (3.27)) the expressions given above for the derived extension
coefficients satisfy all Jacobi equations. This is cumbersome but straightforward and will
not be done here.

3.4. Equivalence of extensions: two-coboundaries

So far we have determined the general form of a two-cocycle on the CK algebra
soω1,...,ωN (N + 1). Two two-cocycles differing by a two-coboundary lead to equivalent
extensions, so the next step is to find the general form of a coboundary. Let us make the
change of generators�ab → �′ab = �ab + µab4, whereµab are arbitrary real numbers.
The commutation relations for the new generators�′ab, obtained from (3.3) with a given
two-cocycleαab,cd are:

[�′ab,�
′
cd ] =

N∑
i,j=0

C
ij

ab,cd�
′
ij +

(
αab,cd −

N∑
i,j=0

C
ij

ab,cdµij

)
4. (3.34)

Therefore, the general expression of a two-coboundaryδµ generated byµ is

(δµ)ab,cd =
N∑

i,j=0

C
ij

ab,cdµij . (3.35)

Using the expressions (3.2) for the structure constants, we obtain

I (δµ)ab,bc = −µac
IIF/IIL (δµ)ab,ac = ωabµbc / (δµ)ac,bc = ωbcµab
III (δµ)ab,cd = (δµ)ac,bd = (δµ)ad,bc = 0.

(3.36)

The question of whether the previously found extension coefficients (or two-cocycles)
define trivial central extensions amounts to checking whether they have the form of a two-
coboundary, (3.36), which may then be used to eliminate the central4 term from (3.34).
This depends on the vanishing of the constantsωi . In fact, the previous analysis classifies
the extensions into three types, which behave in three different ways.
• Type I extensions can be carried out for all CK algebras, as there are no anyωi-

dependent restrictions for the basic type I coefficientsτac. However these extensions are
always trivial (for all CK algebras simultaneously, as seen in (3.36)), and will be discarded.
All expressions simplify considerably if we take this into account, as we shall do from now
on. This ‘uses up’ those coboundaries coming from the valuesµac with two non-consecutive
ac indices. Further equivalences (already for type II) are restricted to redefinitions of
generators with two consecutive indices,�a a+1 → �′a a+1 = �a a+1 + µa a+14 (see (3.37)
and (4.4) below).
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• Type II coefficients can appear in all CK algebras, as theωi-dependent
restrictions (3.25) are not strong enough to force all these coefficients to vanish.
However, the triviality of these extensions is alsoωi-dependent, and we will
see that the 2(N − 1) extensions corresponding to the basic extension coefficients
αL01, α

F
12, α

L
12, . . . , α

F
N−2N−1, α

L
N−2N−1, α

F
N−1N are all trivial for the simple algebras and all

non-trivial for the extreme case of the flag algebra. It is within this particular type of
extensions that apseudo-extension(trivial extension by a two-coboundary) may become a
non-trivial extension by contraction.
• Type III coefficients behave in a completely different way. Theωi-dependent

restrictions (3.26) and (3.27) on type III basic coefficients force many of these coefficients
to vanish (depending on how many constantsωi are equal to zero). Those remaining, once
they are present (that is, allowed) are always non-trivial. This means that there are no type
III non-trivial central extensions coming by contraction from pseudo-extensions.

All that remains is to discuss the possible equivalence among type II extensions.
The basic type II values of the coboundary associated with the change of generators
�a+1a+2→ �′a+1a+2 = �a+1a+2+ µa+1a+24 are

IIF/IIL (δµ)Fa+1a+2 = ωa+1µa+1a+2 (δµ)La+1a+2 = ωa+3µa+1a+2. (3.37)

We remark that (as it should) these coboundaries automatically satisfy equation (3.25). We
must study now how the freedom afforded by these changes can be used to reduce to zero
some of the extension coefficients.

Consider first the singleαL01, the value of which can be arbitrary. We see in (3.37)
that as long asω2 6= 0, we can reduce it to zero by using the coboundaryµ01. Then
the extension corresponding to the basic coefficientαL01 is non-trivial whenω2 = 0 and
trivial otherwise. Likewise, the extension corresponding to the basic coefficientαFN−1N is
non-trivial whenωN−1 = 0 and trivial otherwise. The possible triviality of these extensions
is thus completely governed by two constantsωi which play a special role: the secondω2

and the last but oneωN−1.
Let us now look at the case of pairsαFa+1a+2, α

L
a+1a+2. Here the situation is controlled by

two constantsωi , namelyωa+1 andωa+3. When they are both equal to zero, equation (3.25)
is automatically satisfied, irrespective of the values of the pair of coefficientsαFa+1a+2 and
αLa+1a+2 which cannot be modified by adding a coboundary; in this case the cocycles
associated with these coefficients are simultaneously non-trivial. When only one of the
constantsωa+1 andωa+3 is equal to zero, equation (3.25) forces the vanishing of one of the
coefficients in the pair, while the other can be reduced to zero by the appropriate coboundary
coming fromµa+1a+2. Finally, when both constantsωa+1 andωa+3 are different from zero,
then (3.25) enforces the possibility of simultaneously reducingαFa+1a+2 andαLa+1a+2 to zero
by using the coboundary coming fromµa+1a+2. Therefore the two two-cocycles extensions
corresponding to the two basic coefficientsαFa+1a+2 andαLa+1a+2 are non-trivial when both
ωa+1 = 0 andωa+3 = 0; the two extensions are simultaneously trivial otherwise.

Once the coboundary type I coefficients are removed, the contents of propositions 3.1
and 3.2 may be summarized by table 1.

4. The second cohomology groups of the CK algebras

4.1. The structure of the central extensions of a CK algebra

If we completely disregard the type I extensions, which are trivial for all the CK algebras, all
the results obtained in section 3 can be summed up in the following theorem, which contains
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Table 1. Basic and derived type II and III extension coefficients for CK algebras.

Basic coefficients and relations Number of them

Type IIF/IIL αFa+1a+2 := αa a+1,a a+2 αLa a+1 := αa a+2,a+1a+2 2(N − 1)
a = 0, 1, . . . , N − 2 N > 2
ωa+3α

F
a+1a+2 = ωa+1α

L
a+1a+2 a = 0, . . . N − 3

Type III βb+1d+1 := αb b+1,d d+1 (N − 1)(N − 2)/2
b = 0, 1, . . . , N − 3 d = b + 2, . . . , N − 1 N > 3
ωbβ = ωb+1ωb+2β = ωb+2ωb+3β = ωb+4β = 0 for β ≡ βb+1b+3

ωbβ = ωb+2β = ωdβ = ωd+2β = 0 for β ≡ βb+1d+1

with d = b + 3, . . . , N − 1

Derived coefficients

Type IIF/IIL αac,a c+1 = ωa c−1α
F
c c+1

a = 0, 1, . . . , N − 3 c = a + 2, . . . , N − 1 N > 3
αac,a+1c = ωa+2cα

L
a a+1

a = 0, 1, . . . , N − 3 c = a + 3, . . . , N N > 3

Type III αa a+2,a+1a+3 = −ωa+2 βa+1a+3 a = 0, 1, . . . , N − 3 N > 3

the complete solution to the problem of finding the central extensions of CK algebras:

Theorem 4.1.The independent non-zero commutators of any central extensionsoω1,...,ωN

(N + 1) of the CK Lie algebrasoω1,...,ωN (N + 1) can be written as

[�ab,�bc] = −�ac
[�ab,�a b+1] = ωab�b b+1+ ωa b−1α

F
b b+14

[�ab,�ac] = ωab�bc for c > b + 1

[�ac,�a+1c] = ωa+1c�a a+1+ ωa+2cα
L
a a+14

[�ac,�bc] = ωbc�ab for b > a + 1

[�a a+1, �c c+1] = βa+1c+14 [�a a+2, �a+1a+3] = −ωa+2βa+1a+34

(4.1)

where ωaa := 1. The extension is completely described by a number of extension
coefficients.
• A single type II coefficient,αL01, which produces an extension which is non-trivial if

ω2 = 0 and trivial otherwise.
• (N−2) type II pairs,αF12, α

L
12; . . . ; αFN−2N−1, α

L
N−2N−1. Each pair of coefficients must

satisfyωa+3α
F
a+1a+2 = ωa+1α

L
a+1a+2. The two extensions corresponding to the pairαFa+1a+2

andαLa+1a+2 are both non-trivial whenωa+1 = 0 andωa+3 = 0. The two two-cocycles are
simultaneously trivial otherwise.
• A single type II coefficient,αFN−1N , which produces an extension which is non-trivial

if ωN−1 = 0 and trivial otherwise.
• (N − 2) type III extension coefficientsβ13, β24, . . . , βN−2N , satisfying

ωβb+1b+3 = 0 for ω = ωb, ωb+1ωb+2, ωb+2ωb+3, ωb+4 (4.2)

where when eitherb = 0 or b = N − 3 the first or last condition, which would read
ω0β = 0 or ωN+1β = 0 is not present. The extension corresponding to any of these
non-zero coefficients is always non-trivial.
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• (N −2)(N −3)/2 type III extension coefficientsβ14, β15, . . . , β1N ;β25, . . . , β2N ; . . . ,
. . . ;βN−3N whose indices differ by more than two. The coefficientβb+1d+1 satisfies

ωβb+1d+1 = 0 for ω = ωb, ωb+2, ωd, ωd+2 (4.3)

with similar restrictions as to the actual presence of the equations involving the non-existent
valuesω0 or ωN+1. The extension corresponding to any of these non-zero coefficients is
always non-trivial.

All type II extensions come from the pseudo-cohomology mechanism [19, 20]; if
ωb+1 6= 0 6= ωb+3 we obtain from (4.1)

[�a b+1, �a b+2] = ωa b+1

(
�b+1b+2+ 1

ωb+1
αFb+1b+24

)
[�b+1c, �b+2c] = ωb+2c

(
�b+1b+2+ 1

ωb+3
αLb+1b+24

) (4.4)

so we may remove the extension coefficients by means of a redefinition of the generator
�b+1b+2 given by the one-cochain of non-zero coordinates1

ωb+1
αFb+1b+2 = 1

ωb+3
αLb+1b+2.

Whenωb+1 (ωb+3) goes to zero the extension given byαFb+1b+2, (αLb+1b+2) might be non-
trivial (because the one-cochain from it comes diverges butωa b+1/ωb+1 does not). Due to
the Jacobi identity (represented here by the equationωb+3α

F
b+1b+2 = ωb+1α

L
b+1b+2) the non-

trivial extension exists if bothωb+1 = ωb+3 = 0. In terms of the standard triangular
arrangement of generators, it is worth remarking that each type II coefficientαFb+1b+2
appears only in the extended commutators of two horizontal neighbours in the columns
of �0b+1, �0b+2, while each type II coefficientαLb+1b+2 appears only in the extended
commutators of two vertical neighbours in the rows of�b+1N,�b+2N . The corresponding
extension is non-trivial only when bothωb+1 = ωb+3 = 0; this means that the algebra has
two different semidirect structures (cf section 2). This is exhibited by the two rectangle
boxes in the following diagram, where we have shortenedαF ≡ αFb+1b+2 andαL ≡ αLb+1b+2
and we have also indicated theωi factors which appear in these extended commutators for
the generators which are inside one of the boxes but outside the other:

�01. . . �0b �0b+1
ω0bα

F

−→ �0b+2 �0b+3 �0b+4 . . . �0N

. . .
...

...
...

...
...

...

�b−1b �b−1b+1
ωb−1bα

F

−→ �b−1b+2 �b−1b+3 �b−1b+4 . . . �b−1N

�b b+1
αF−→ �bb+2 �bb+3 �bb+4 . . . �bN

�b+1b+2 �b+1b+3 �b+1b+4 . . . �b+1N

↓ αL ↓ ωb+3b+4α
L ↓ ωb+3Nα

L

�b+2b+3 �b+2b+4 . . . �b+2N

�b+3b+4 . . . �b+3N

. . .
...

�N−1N .

4.2. The dimension of the second cohomology groups of the CK contracted algebras

Theorem 4.1 contains all the necessary information to determine easily the dimension of the
second cohomology groupH 2(soω1,...,ωN (N + 1),R) of the CK algebras. This dimension is
obtained as the sum of a number of completely independent contributions, each one related
to the vanishing of specific groups of constantsωi as follows.
• 1 whenω2 = 0, with two-cocycle determined by the basic coefficientαL01.



Central extensions of the quasi-orthogonal Lie algebras 1387

• 2 for each pair of next-neighbour zero constants,ω1 = ω3 = 0, ω2 = ω4 = 0, . . . ,
ωN−2 = ωN = 0. The two-cocycles appearing with the vanishing pairωa+1 = ωa+3 = 0
are determined by basic extension coefficientsαFa+1a+2 andαLa+1a+2. This might amount to
a subtotal of 2(N −2) when all pairs of second neighbours are zero, i.e. when all constants
ωi are zero.
• 1 whenωN−1 = 0, with extension coefficientαFN−1N .
• 1 for each group of zero constants{ωb, ωb+2, ωb+4} or {ωb, ωb+1, ωb+3, ωb+4} with

extension coefficientβb+1b+3.
• 1 for each group of zero constants{ωb, ωb+2, ωd, ωd+2} with extension coefficient

βb+1d+1 for d = b + 3, . . . , N − 1.
As mentioned after (4.2) and (4.3), the literal application of the two last rules may

apparently involve the constantsω0, ωN . In these cases the corresponding conditions
involving these inexistent values should be disregarded.

We can translate the previous rules into a closed formula for the dimension of the second
cohomology groupH 2(soω1...ωN (N + 1),R). Let δi be defined by

δi =
{

1 ωi = 0

0 ωi 6= 0
(i = 1, . . . , N) (4.5)

then dimH 2(soω1...ωN (N + 1),R) is given in terms of the sequenceδ1, δ2, . . . , δN by

dim(H 2(soω1...ωN (N + 1),R)) = δ2+ δN−1+ 2
N−2∑
i=1

δiδi+2

+
N−2∑
i=1

δiδi+4[δi+2+ δi+1δi+3− δi+2δi+1δi+3] +
N−3∑
i=1

N∑
j=i+3

δiδi+2δj δj+2 (4.6)

whereωi ≡ 0 (δi = 1) for i > N . For instance, ifωi = 0 ∀ i = 1, . . . , N (flag algebra)
then allδi = 1, hence all terms in (4.6) contribute and we obtain

dim(H 2(so0...0(N + 1),R)) = 2+ 2(N − 2)+ (N − 2)+
N−3∑
i=1

(N − i − 2)

= 2(N − 1)+ (N − 2)(N − 1)

2
= N(N + 1)

2
− 1. (4.7)

Each term in formula (4.6) is related to a given extension coefficient as stated in theorem 4.1
and the preceding rules.

To effectively apply the above rules, it is convenient to browse through the list of
possible extension coefficients and to see whether each of them is allowed/trivial for the
algebra we are dealing with or not. As a first example, consider the algebraso0,ω2,0,0(5) with
ω2 6= 0. For any CK algebrasoω1,ω2,ω3,ω4(5), the possible extension coefficients are:αL01,
αF12, αL12, αF23, αL23, αF34; β13, β14, β24. In this case, it is clear that the type II non-trivial ones
are onlyαF12, αL12 (asω1 = ω3 = 0) andαF34 (as hereωN−1 ≡ ω3 = 0). Type III extension
coefficientβ13 is allowed and therefore gives a non-trivial cocycle, asω1 = 0, ω3 = 0 and
ω4 = 0. Type III extensionβ14 is not allowed, sinceω2 andω3 are not simultaneously equal
to zero. Type III coefficientβ24 is allowed (and therefore non-trivial) asω1 = 0, ω3 = 0.
So the dimension of the second cohomology group is equal to 5 in this case.

The dimension ofH 2 for many other algebras can be derived from these rules. Although
in the next section we shall give explicitly all the extended CK algebras up toN = 4, we
mention here the result for some interesting algebras (see section 2). In some cases these
cohomology groups have been known for a long time.
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(1) When allωi are different from zero, all type III coefficients are equal to zero, and
all type II (which can be different from zero) are coboundaries. Therefore, the second
cohomology group of the simple pseudo-orthogonal algebrasoω1,...,ωN (N + 1) ∀ ωi 6= 0, is
trivial in accordance with the Whitehead lemma,H 2(G,R) = 0 if G is semisimple.

(2) If only the first constant is equal to zero,ω1 = 0, we see that the inhomogeneous
algebrasiso(p, q) wherep + q = N (e.g. Euclidean and Poincaré) have no non-trivial
extensions except in the caseN = 2, where the first constant also plays the role of the last
but one, and there is a single extension coefficientαF12. This result is just a rephrasing of the
statement that in this case every local exponent is equivalent to zero forN > 2, as found
by Bargmann [3] in his classical study.

(3) Whenω1 = ω2 = 0 (all others being non-zero) the twice inhomogeneous algebras
iiso(p, q) have a non-trivial extension coefficient:αL01 (this is just the mass for the Galilei
algebra, which parametrises its second cohomology group). Generically, this is the only
non-trivial extension in this family of algebras, though in the lower dimensional cases
N = 2, 3 additional non-trivial extensions appear, as seen in the examples below.

(4) The flag algebraii . . . iso(1) is the most contracted algebra in the CK family, and
corresponds to allωi = 0. In this case, basic type II or III extension coefficients, whenever
present, lead to non-trivial extensions. Furthermore, all the conditions that these coefficients
must satisfy are automatically fulfilled, as a consequence of the vanishing of allωi . There
are 2(N − 1) type II and [(N − 1)(N − 2)/2] type III coefficients in this case, so that

H 2(so0,...,0(N + 1),R) = R2(N−1)+[(N−1)(N−2)/2] = R
[(

N+1
2

)
−1
]
. (4.8)

The dimension ofH 2 for the flag algebra is just equal to dim(soω1,...,ωN (N + 1)) − 1 (see
(4.7)).

To conclude this section we mention that, had we considered graded contractions from
so(N + 1) beyond the CK family, we would have found a larger set of algebras with the
[(N + 1)N/2]-dimensional Abelian algebra as the most contracted one. Since for it all
equations (3.5) are trivially satisfied and only the antisymmetry conditions (3.4) remain, the

cohomology group of this Abelian algebra has dimension
(
N+1

2

) ((
N+1

2

)− 1
)
/2.

5. Examples: all central extensions forN = 2, 3, 4

We extract from the general solution in theorem 4.1 the central extensions for all the CK
algebrassoω1,...,ωN (N+1) for N = 2, 3, 4 [15]. We remark that our results cover in a single
stroke a large family of Lie algebras; in particular, the familysoω1,ω2,ω3,ω4(4+ 1) contains
all relativistic and non-relativistic 3+1 kinematical algebras, the cohomology of which can
be then read off directly.

5.1. soω1,ω2(3)

There are two central extension coefficients of type II:

αL01 ≡ α02,12 αF12 ≡ α01,02 (5.1)

which are not constrained by any additional condition. The Lie brackets ofsoω1,ω2(3) are

[�01, �02] = ω1�12+ αF124 [�01, �12] = −�02 [�02, �12] = ω2�01+ αL014.

(5.2)
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The triviality of any such extension is governed by the second and last-but-one constants
in the listωi . In this case, these are the second and the first. ThusαL01 is trivial if ω2 6= 0,
andαF12 is trivial if ω1 6= 0. This is exhibited by the redefinitions

�01→ �01+ α
L
01

ω2
4 ω2 6= 0 �12→ �12+ α

F
12

ω1
4 ω1 6= 0. (5.3)

Thus, dim[H 2(soω1,ω2(3),R)] is equal to:
• 0 for the simple Lie algebrasso(3) andso(2, 1) (bothω1 andω2 6= 0),
• 1 for the two-dimensional Euclidean algebra, which appears for the constants(0, 1)

(extension coefficientαF12) and(1, 0) (extension coefficientαL01),
• 1 for the(1+ 1)-Poincaŕe algebra, which also appears twice, as(0,−1) and(−1, 0),

respectively with extension coefficientsαF12 andαL01,
• 2 for the(1+1)-Galilei algebra, which appear for constants(0, 0), with both extension

coefficientsαF12 andαL01. Physically, these extensions are parametrized by the mass and a
constant force (see [7] and references therein and [21]).

5.2. soω1,ω2,ω3(4)

The full set of extension possibilities appears first in this case. However, there are some
non-generic coincidences. There are four basic extension coefficients of type II, and one of
type III:

αL01 ≡ α02,12 αF12 ≡ α01,02 αL12 ≡ α13,23 αF23 ≡ α12,13 β13 ≡ α01,23

(5.4)

which must satisfy

ω3α
F
12 = ω1α

L
12 ω1ω2β13 = 0 ω2ω3β13 = 0. (5.5)

Then, equations (4.1) give the commutation rules ofsoω1,ω2,ω3(4):

[�01, �02] = ω1�12+ αF124 [�01, �12] = −�02 [�02, �12] = ω2�01+ αL014

[�01, �03] = ω1�13 [�01, �13] = −�03 [�03, �13] = ω3(ω2�01+ αL014)

[�02, �03] = ω1(ω2�23+ αF234) [�02, �23] = −�03 [�03, �23] = ω3�02

[�12, �13] = ω2�23+ αF234 [�12, �23] = −�13 [�13, �23] = ω3�12+ αL124

[�01, �23] = β134 [�02, �13] = −ω2β134 [�03, �12] = 0.

(5.6)

The extension coefficientαL01 produces a non-trivial cocycle when the second constant
ω2 = 0, the extensionαF23 is non-trivial when the last-but-one constant (ω2 again in this case)
is zero and the extensions given byαF12 andαL12 are non-trivial whenω1 = ω3 = 0. The
extension determined byβ13 is only present (see (5.5)) whenω2 = 0 or whenω1 = ω3 = 0,
and whenever it appears, it is non-trivial. The redefinition of generators displaying the
triviality of type II extensions is:

�01→ �01+ α
L
01

ω2
4 if ω2 6= 0

�12→ �12+ α
L
12

ω3
4 if ω3 6= 0

�12→ �12+ α
F
12

ω1
4 if ω1 6= 0

�23→ �23+ α
F
23

ω2
4 if ω2 6= 0.

(5.7)
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Note that whenω1 and ω3 both differ from zero, equation (5.5) guarantees that both
expressions for the redefinition of�12 indeed coincide.

To conclude the analysis we now give dim[H 2(soω1,ω2,ω3(4),R)]:
• 3 for ω2 = 0 with eitherω1 or ω3 non-zero: non-trivial extension coefficientsαL01, αF23

andβ13. Examples here are both(2+1) Newton–Hooke algebras(±1, 0, 1), (1, 0,±1) and
the (2+ 1) Galilean oneiiso(2) (0, 0, 1), (1, 0, 0). Also iiso(1, 1) (−1, 0, 0), (0, 0,−1)
and t4� (so(1, 1)⊕ so(1, 1)) (−1, 0,−1).
• 3 for ω1 = ω3 = 0 andω2 6= 0; non-trivial extensions areαF12, αL12 andβ13. Here we

find the(2+ 1) Carroll algebra(0, 1, 0) and ii ′so(1, 1) (0,−1, 0).
• 5 for the most contracted algebra in the CK family withω1 = ω2 = ω3 = 0; it

corresponds to the flag space algebraiiiso(1).
• 0 for all the remaining algebras. Up to isomorphisms these include the semisimple ones

so(4) (once),so(3, 1) (four times),so(2, 2) (three times), the three-dimensional Euclidean
iso(3) (two times) and Poincaré algebrasiso(2, 1) (six times).

For convenience we include below the standard triangular diagram with all the extended
commutators forsoω1,ω2,ω3(4). An arrow between generatorsA andB means that a central
4-term, with coefficient indicated near the arrow, is added to the non-extended commutator
[A,B]. In the usual kinematical interpretation, the generators may be translated as�01→ H

(Hamiltonian),�02→ P1,�03→ P2 (momenta),�12→ K1,�13→ K2 (boosts),�23→ J

(rotation).

�01

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z~

β13

αF12
- �02

-
ω1α

F
23

Z
Z
Z
Z
Z
ZZ~

αF23

?

αL01 −ω2β13 ω3α
L
01

αL12

?

?

�03

�12
- �13

�23

We recall that up to now we have referred in this paper to the cohomology groups
of Lie algebras and not of groups. As mentioned they do not necessarily coincide
[3, 8, 9], as illustrated by the standard example of theG(2 + 1) Galilei group (our
SO(0,0,1)(4)) for which dim[H 2(G(2+ 1), U(1))] = 2 although dim[H 2(G(2+ 1),R)] = 3,
a fact known [7] (see also [22] for a recent discussion) already for 25 years†. With
�01 ≡ H and space rotation generator�23 ≡ J , we see that the algebra commutator
[H, J ] admits an extension throughβ13 but that the compactness condition on the space
rotation generatorJ , relevant for the Galilei group, forces the coefficientβ13 to disappear.
This is because under a rotation generated byJ in the extended algebra,H transforms by

† This well known result has attracted a renewed interest [23], specially in relation with the absence of non-
relativistic planar systems with exotic angular momentum (anyons) [24].
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H → exp(θJ )H exp(−θJ ) = H − θβ134. SinceJ is compact the rotationsθ = 2π
(with ω3 = 1) and θ = 0 should coincide, which forcesβ13 = 0 and reduces in one
dimension the group cohomology. In general, within the CK family of groups as obtained by
exponentiation of the matrix representation (2.5) of the CK Lie algebra, the one-parameter
subgroup generated by�ab is compact ifωab > 0 and non-compact otherwise. This
implies that the extension coefficientβa+1c+1, which appears in the extended commutator
[�a a+1, �c c+1] = βa+1c+14 for the algebra, does not correspond to a group extension
whenever at least one of the generators�a a+1 or �c c+1 corresponds to a compact one-
parameter subgroup, that is when eitherωa+1 > 0 or ωc+1 > 0.

5.3. soω1,ω2,ω3,ω4(5)

There are six basic extension coefficients of type II and three of type III:

αL01 ≡ α02,12 αL12 ≡ α13,23 αL23 ≡ α24,34

αF12 ≡ α01,02 αF23 ≡ α12,13 αF34 ≡ α23,24

β13 ≡ α01,23 β14 ≡ α01,34 β24 ≡ α12,34

(5.8)

verifying the additional conditions:

ω3α
F
12 = ω1α

L
12 ω4α

F
23 = ω2α

L
23

ω1ω2β13 = 0 ω2ω3β13 = 0 ω4β13 = 0
ω2β14 = 0 ω3β14 = 0
ω1β24 = 0 ω2ω3β24 = 0 ω3ω4β24 = 0.

(5.9)

Therefore the Lie brackets of the extended CK algebrassoω1,ω2,ω3,ω4(5) are

[�01, �02] = ω1�12+ αF124 [�02, �12] = ω2�01+ αL014

[�12, �13] = ω2�23+ αF234 [�13, �23] = ω3�12+ αL124

[�23, �24] = ω3�34+ αF344 [�24, �34] = ω4�23+ αL234

[�13, �14] = ω2(ω3�34+ αF344) [�04, �14] = ω3ω4(ω2�01+ αL014)

[�02, �03] = ω1(ω2�23+ αF234) [�14, �24] = ω4(ω3�12+ αL124)

[�03, �04] = ω1ω2(ω3�34+ αF344) [�03, �13] = ω3(ω2�01+ αL014)

[�01, �23] = β134 [�02, �13] = −ω2β134 [�01, �34] = β144

[�12, �34] = β244 [�13, �24] = −ω3β244

(5.10)

the remaining commutators being as in the non-extended case (2.4).
We display the explicit result for each CK algebrasoω1,ω2,ω3,ω4(5) in table 2. The

first column shows the number of simple contractions (the number of coefficientsωa set
equal to zero). The second schematically names the centrally extended Lie algebras. The
third specifies the coefficientsωa different from zero together with the non-trivial central-
extension coefficients allowed. Finally, the fourth gives dim[H 2(soω1,ω2,ω3,ω4(5),R)] as a
sum of the type II and type III contributions. Note that the only kinematical algebras
in (3 + 1) dimensions which have non-trivial central extensions (and hence projective
representations) are the(3+ 1) oscillating Newton–Hooke(1, 0, 1, 1), expanding Newton–
Hooke (−1, 0, 1, 1) and Galilean(0, 0, 1, 1) algebras, all of them of ‘absolute time’ [16].
This table can be used as an example of how to compute dim[H 2(G,R)] from theorem 4.1.
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Table 2. Non-trivial central extensionssoω1,ω2,ω3,ω4(5) of soω1,ω2,ω3,ω4(5). The constantsωi
appearing explicitly are assumed to be different from zero.

# Extended algebra (CK constants) (Non-trivial ext. coefficients) dimH 2

0 so(5) (ω1, ω2, ω3, ω4) 0
so(4, 1)
so(3, 2)

1 iso(4) (0, ω2, ω3, ω4) or (ω1, ω2, ω3, 0) 0
iso(3, 1)
iso(2, 2)
t6(so(3)⊕ so(2)) (ω1, 0, ω3, ω4) [αL01] or 1+ 0
t6(so(3)⊕ so(1, 1)) (ω1, ω2, 0, ω4) [αF34]
t6(so(2, 1)⊕ so(2))
t6(so(2, 1)⊕ so(1, 1))

2 iiso(3) (0, 0, ω3, ω4) [αL01] or 1+ 0
iiso(2, 1) (ω1, ω2, 0, 0) [αF34]
ii′so(3) (0, ω2, ω3, 0) 0
ii′so(2, 1)
it4(so(2)⊕ so(2)) (0, ω2, 0, ω4) [αL12, α

F
12, α

F
34;β24] or 3+ 1

it4(so(2)⊕ so(1, 1)) (ω1, 0, ω3, 0) [αL01, α
L
23, α

F
23;β13]

it4(so(1, 1)⊕ so(1, 1))
t6(iso(2)⊕ so(2)) (ω1, 0, 0, ω4) [αL01, α

F
34;β14] 2+ 1

t6(iso(2)⊕ so(1, 1))
t6(iso(1, 1)⊕ so(1, 1))

3 iiiso(2) (0, 0, 0, ω4) [αL01, α
F
12, α

L
12, α

F
34;β14, β24] or 4+ 2

iiiso(1, 1) (ω1, 0, 0, 0) [αL01, α
F
23, α

L
23, α

F
34, β13, β14]

iii′so(2) (0, 0, ω3, 0) [αL01, α
F
23, α

L
23;β13, β24] or 3+ 2

iii′so(1, 1) (0, ω2, 0, 0) [αF12, α
L
12, α

F
34;β13, β24]

4 iiiiso(1) (0, 0, 0, 0) [αL01, α
F
12, α

L
12, α

F
23, α

L
23, α

F
34;β13, β14, β24] 6+ 3

6. Concluding remarks

We have characterized with generality the second cohomology groupsH 2(soω1...ωN (N +
1),R) of the CK family of algebrassoω1...ωN (N + 1), which is a particular subfamily of
all graded contractions of theso(N + 1) algebra. The algebras in the CK family can
be described in a simultaneous and economical way usingN real ‘contraction’ coefficients
ω1, ω2, . . . , ωN . The procedure also exhibits the origin of the various central extensions and
in particular differentiates clearly those which come from contractions of trivial extensions
from those which do not.

It is well known that, by Whitehead’s lemma, all semisimple Lie algebras have trivial
second cohomology groups and that by the Levi–Mal’čev theorem any finite-dimensional
Lie algebraG is the semidirect extension of a semisimple algebra and the radical ofG. Since
inhomogeneous algebras come from contraction, our procedure may be applied to find the
cohomology groups of other inhomogeneous algebras as well; in particular, one could start
from the real simple algebras of theAl andCl series. There are several CK families of
algebras (see [25] for a cursory description) andany simple real Lie algebra appears as a
member of some family. We have discussed here only the orthogonal CK family, which
include the simple algebrasso(N +1) andso(p, q) in theBl andDl series, as well as their
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(quasi-simple) contractions. A similar approach would lead to a complete characterization
of the second cohomology groups for quasi-simple algebras of inhomogeneous type obtained
by contraction from other real simple Lie algebras. This will be matter for further work.

Another possible application of the contraction method is the search for Casimir
operators of inhomogeneous algebras. The number of primitive Casimirs of a simple algebra
G is equal to its rankl, which in turn is equal to the different primitive invariant polynomials
which can be constructed onG. Thus, the graded contraction approach allows us, in
principle, to find central elements of the enveloping algebras by contracting the originall

Casimir–Racah operators. Clearly, the procedure does not permit us to findall the Casimirs
of an arbitrary contraction of a simple Lie algebra of rankl, since the final step is always
an Abelian algebra (hence with as many primitive Casimirs as generators) and dimG > l.
However, within the CK family the number of functionally independent Casimirs remains
constant (see [26]). This provides another justification for the name ‘quasi-simple’ given to
its members, and explains in a simple way why e.g. the number of Casimir operators for
the simple de Sitter algebra and the non-simple Poincaré one is the same.

The same kind of approach we have pursued here for studying the second cohomology
groups of the CK algebras has been developed to study their deformations (in the sense
of [27–29]). In particular, a whole family of deformations of inhomogeneous Lie algebras
[30], or working to first order, of the corresponding bialgebras [31], has been found. The
semidirect structure of the ‘classical’ CKω1 = 0 inhomogeneous Lie algebras becomes
[32] a bicrossproduct [33] structure for their CK deformed counterparts. Whether or not
this extends to the deformations of other semidirect structures associated with the vanishing
of anyωa requires further study. A related problem would be the analysis of the structure of
the deformation of inhomogeneous Lie algebras from the present graded-contraction point
of view, for which central extensions should appear as cocycle-bicrossproducts. These
questions are worth studying.
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[21] Aldaya V, de Azćarraga J A and Tucker R W 1986J. Geom. Phys.3 303
[22] Doebner H D and Mann H J 1995J. Math. Phys.36 3210
[23] Grigore D R 1993J. Math. Phys.34 4172

cf Grigore D R 1996J. Math. Phys.37 460
[24] Bose S K 1995Commun. Math. Phys.169 385
[25] Herranz F J and Santander M 1997 A Cayley–Klein scheme for all quasisimple real Lie algebras and

Freudhental magic squaresPhysical Applications and Mathematical Aspects of Geometry, Groups, and
Algebrasvol 1, ed H-D Doebneret al (Singapore: World Scientific) p 151

[26] Herranz F J and Santander M S 1997J. Phys. A: Math. Gen.30 5411
[27] Drinfel’d V G 1987Proc. 1986 Int. Congr. of Math. (MSRI Berkeley I)ed A Gleason, p 798
[28] Jimbo M 1985Lett. Math. Phys.10 63

Jimbo M 1986Lett. Math. Phys.11 247
[29] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Alg. Anal. 1 178 (Engl. transl. 1990Leningrad

Math. J.1 193)
[30] Ballesteros A, Herranz F J, del Olmo M A and Santander M 1995Lett. Math. Phys.33 273
[31] Ballesteros A, Gromov N, Herranz F J, del Olmo M and Santander M 1995J. Math. Phys.36 5916
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