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Abstract. We determine the central extensions of a whole family of Lie algebras, obtained
by the method of graded contractions from(N + 1), N arbitrary. All the inhomogeneous
orthogonal and pseudo-orthogonal algebras are members of this family, as well as a large number
of other non-semisimple algebras, all of which have at least a semidirect structure (in some cases
two or more). The dimensions of their second cohomology graip&, R) and the explicit
expression of their central extensions are given.

1. Introduction

This paper is devoted to investigating the second cohomology groups of a large class of
algebras, the so-called orthogonal Cayley—Klein (CK) family of algebras. These algebras
may be obtained by a sequence of ordinary contractions starting sibom + 1) or from

so(p, q) and can be described by using the alternative method of graded contractions [1, 2].

The problem of finding the cohomology groups for this family of algebras is primarily
of mathematical interest but it is not devoid of a physical one since the CK algebras include
all kinematical algebras of physical relevance. There are (at least) three main areas where
central extensions play a role in physics. First, the existence of a non-trivial cohomology
group is associated with projective representations, a fact discussed first in general by
Bargmann [3] but which has its roots in the work of Weyl [4] and in the classic paper
of Wigner [5]. Second, in the Kirillov—Kostant—Souriau theory, homogeneous symplectic
manifolds under a group appear as the orbits of the coadjoint representation of either the
group itself or of a central extension. Third, if a group is considered as the invariance group
of a given physical theory, the most general Lagrangian which leads to invariant equations
of motion is not necessarily a strictly invariant Lagrangian, but a quasi-invariant one; again
this is linked to the central extensions of the group [6].

The second cohomology group is trivial for semisimple Lie algebras. For some specific
non-semisimple algebras it has also been studied (e.g. for Euclidean, RoamchiGalilei
algebras inV dimensions). It is well known [3, 7] that the Galilei group admits projective
representations and the Lie algebra statenf#fiG(3 + 1), R) = R has its counterpart in
the fact that the group can be centrally extendedlUdyl) (the phase group involved in
the ray [3] representations). The cohomology of these algebras in low dimensions is also
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known. However, some recent rediscoveries (as for2el) Galilei algebra) suggest that
part of these results have become buried in the literature.

Moving from the semisimpleso(p, q) algebras by successive contractions it is
found that, as a rule, the cohomology groups of the resulting algebras become larger.
However, inhomogeneity is ngter se a sufficient condition for the existence of non-
trivial cohomology, as exhibited by the contrast between the 10-dimensional Galilei and
Poincaé algebras. Moreover, as far as we know, there is no systematic study of the second
cohomology groups covering a large family of algebras, so that the present study may help
to describe the relationship between cohomology and contractions. It should be noted,
however, that the dimension of the Lie algebra cohomology groups does not need to be
the same as the dimension of th&1)-valued group cohomology. This is because when
moving from the Lie algebras to Lie groups the topology of the groups comes into play and
this may reduce the dimension of the different cohomology groups (for a general statement
see [3] and [8]). In Bargmann’s terminology [3] (see [9] for an outlook) it is not always
possible to extend a local exponent to the whole group (it is possible if the group is simply
connected, hence the role of the universal covering group).

This paper is organized as follows. The algebras in the orthogonal CK family are
introduced in section 2, as well as the way the relevant kinematical Lie algebras are included
in it. Section 3 gives a reasonably complete account of the procedure used to find the
central extensions of the orthogonal CK algebras (including the characterization of trivial
and equivalent extensions). This section may be omitted completely if the reader is not
interested in the computational details. In section 4 we state the final solution and provide
a method to compute the dimension of the second cohomology group for any CK algebra
in any dimension. The method is illustrated in section 5, where all central extensions for
the lower dimensional CK orthogonal algebras are explicitly described, and some comments
on thegroup cohomology for the CK quasi-orthogonal groups are made. Some concluding
remarks and prospects for future work close the paper.

2. The CK family of quasi-orthogonal algebras as graded contractions ofo(IN + 1)

Let us first introduce the set of algebras we are going to deal with in connection with
graded-contraction theory [1, 2], which is a convenient tool for our aims in this paper.
The starting point is the real Lie algebsa(N + 1) with N(N + 1)/2 generators,,
(a,b=0,1,...,N, a < b). Its non-zero Lie brackets are

[Qab, Qac] = Qpc [Qabv ch] = —Qq [Qaca ch] = Qup a<b<c (21)

(commutators involving four different indices are zero). This Lie algebra can be endowed
with a fine grading groupSZ?N. The corresponding graded contractionssofN + 1)
constitute a large set of Lie algebras, dependingn-2 real contraction parameters [10],
which include from the simple Lie algebras(p, ¢) (when all parameters are different
from zero) to the Abelian algebra in the opposite case, when all parameters are equal
to zero. Properties associated with the simplicity of the algebra are lost at some point
beyond the simple algebras in the contraction lattice, yet there exists a particular subset or
family of these graded contractions, nearer to the simple ones, which essentially preserve
these properties and may therefore be called [11] ‘quasi-simple’ algebras. This family [12]
encompasses the pseudo-orthogonal algebrasB(tlaed D, Cartan series) as well as their
nearest non-simple contractions; collectively, all these algebras are qabsdorthogonal
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In this paper we will deal exclusively with this familyto be defined precisely below. Its
members are called CK algebras since they are exactly the family of motion algebras of
the geometries of a real space with a projective metric in the CK sense [13, 14]. If the
graded contraction procedure is implicitly assumed, the algebras in the CK family may be
referred to as contractions of the compaetN + 1), although in this sentence the word
‘contraction’ must be adequately understood and the compactness is lost.
The set of CK Lie algebras depends Snreal coefficientsos, ..., wy which codify in
a convenient way the information on the Lie algebra structure. In terms of

Wap "= Wa41Wa42 -« - . Wp (a,b=0,1,...,N, a <b) Waa =1, (2.2)
for which we remark the relations
Wae = WapWOpe a<b<c Wy = Wy_14 a=1,...,N, (2.3

the independent non-vanishing commutation relations in the contracted CK Lie algebra are
given (cf (2.1)) by

[Qaln Qac] = Wap2pc [Qab’ ch‘] = —Qu¢ [Qacs ch] = Wpe b
a<b<ec. (2.4)

the parameters;. This has a (vector) representation @y + 1) x (N + 1) real matrices,
given by

Qup = —Waplap + €pa (25)

wheree,;, is the matrix with a single non-zero entry, 1, in the ravand columnb. For

w1 = ---=wy =1, we recover the compagb(N + 1) algebra. Since each coefficieng

may take positive, negative or zero values, and by means of a simple rescaling of the initial
generators it can be reduced to the standard values-efLIor 0, it is clear that the family

oy (N +1) includes 3’ Lie algebras. Some of these can be isomorphic; for instance,

seeey

Sou)l,a)z ..... WN-1,WON (N + 1) ad SOwN.wN,l....,wg,wl (N + 1) (2‘6)

The family so., ..., (N + 1) of CK algebras includes algebras of physical interest [15].
The structure of these algebras can be characterized by two statements.

e Whenall constantsw, # 0, the algebrao,, . ., (N + 1) is a simple (barring the
specialN = 3 case) real Lie algebra in the Cartan seifesr D;, and it is isomorphic to
a pseudo-orthogonal algebra(p, ¢) with p + ¢ = N + 1.

e If a constantw, =0, fora =1, ..., N, the resulting algebrao,,
has the semidirect structure (see equation (2.4))

00 1(@) B S04, 0oy(N+1—a)) (2.7)

wheret is an Abelian subalgebra dim= a(N + 1 — a) and the remaining subalgebra is a
direct sum. The three subalgebras appearing in (2.7) are generated by

t=(Q;; i=01...,a-1 j=a,a+1...,N)
..... a)afl(a)=<9ij; isjzo» 17"-7a_1> (28)
S04yt on(N+1—a)=(Q;; i,j=a,a+1...,N).

w,=0,...,05 (N + 1)

,,,,,

1 The study of the cohomology of the general graded contractions(®f 4+ 1) could be performed similarly; we
shall nevertheless restrict ourselves to the CK family. This means, for instance, that the ‘completely contracted’
(and hence Abelian) algebra, for which difd(G, R) = (d";‘g), is not included.
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If eithera = 1 ora = N, then the direct sum in (2.7) has a single summand. This
decomposition as a semidirect sum is true irrespective of whether the remaining constants
w; are equal to zero or not.

The structure behind this decomposition can be described visually by setting the
generators in a triangular array. The generators spanning the subspezéhose inside
the rectangle, while the subalgebras,, ., ,(a) andso,,,, . o (N +1—a) correspond
to the two triangles to the left and below the rectangle respectively,

.....

Qo1 Qo2 ... Rog-1 Qo4 Qoar1 ... Qon
Qi ... Q41 Q14 Qigr1 .- Qay
S-251725471 Qu72a S-25172u+1 cee S.21172N
Qa—la Qa—1a+l e Qa—lN
Qaa+1 v Qun
Qy_1n.
The Abelian rectangle is reduced to the r&y;, i = 1, ..., N for w3 = 0 or to the column

Qin, 1 :0,1,...,N—1Whean =0.

Let us consider some specially relevant algebras in the CK familywAllare assumed
to be different from zero, unless otherwise explicitly stated.

(1) w, # 0 Va. Hereso,,. . .,(N + 1) is a pseudo-orthogonal algebya(p, g) with
p+¢q = N + 1. The matrix representation (2.5) of this algebra generates a group of linear
transformations onV + 1 real variables which leave invariant a quadratic fogmwith
matrix diagl, wo1, woy, ..., woy). The signature of this quadratic form is the number of
positive and negative terms in the sequefitev;, wiwsy, ..., wiw; ... wy) SO that eachw;
governs the relative sign of two consecutive diagonal elements in the metric matrix, the
element wherey; appears for the first time and the previous one.

(2) w1 = 0. The sog,.. .0y(N + 1) algebras are the usual pseudo-orthogonal
inhomogeneous ones, with a semidirect sum structure given by

..... on(N +1) =ty © 504, 0y N)=iso(p,q) p+qg=N

whereso,,. .y (N) acts onsy through the vector representation. The Euclidean algebra
iso(N) appears once Wwithwy, ws,...,wy) = (0,1,...,1). The Poinca& algebra
iso(N —1,1) is reproduced several times, e.g. fan, wy, ..., wy) = (0,-1,1,...,1).

(3) w1 = w2 = 0. These algebras have two different semidirect sum structures (cf (2.7)).
The one associated with the vanishingegfis

SUO,wz

IN © $00,=0,03,....0x (N)
while the structure associated with the vanishingvefis
ton—2 © (500,=0(2) B 5005, (N — 1)).
The first structure can also be seen as a ‘twice-inhomogeneous’ pseudo-orthogonal algebra
500.0.w5...0n (N +1) =ty O (tn—1 O SO0u,,...0y (N — 1)) =iiso(p, q) p+gq=N-1
(2.9)

For example, the Galilean algebigso(N — 1) appears forw; = (0,0,1,...,1). This
pattern continues fab; = w, = w3 = 0, etc.
(4) oy = 0. Here the algebras have a semidirect sum structure:

$0u1.09,..on1,0(N + 1) = 13 © S04, 05,....on 1 (N) = i's0(p, q) (2.10)



Central extensions of the quasi-orthogonal Lie algebras 1377

where nowso(p, ¢) acts ory,, through the contragredient of the vector representation, hence
the notation with a prime. Of course these algebras are isomorphic to the ones described in
(2) as above (cf (2.6)). A pattern similar to that in (3) occurs for the cages wy_1 =0,
etc.

(5) w1 = wy = 0. They have two different semidirect sum splittings. The first is

SOO,wz ..... a)N,l,O(N + 1) = tN G (tzl\/,]_ @ Soa)z ..... wal(N - 1)) = ii/so(p’ Q) (211)

wherep + ¢ = N — 1, so(p, q) acts onty,_; through the contragredient of the vector
representation whilé'so(p, ¢) acts onry through the vector representation. The other is:

soo,u)z ..... a)N,l,O(N + 1) = t]/\/' @ (tN—l O Ssz ..... wN,l(N - 1)) = i/iso(pﬂ q) (2'12)

One example of (2.11) i&’so(3), the Carroll algebra i3 + 1) dimensions [16], which
corresponds t@0, 1, 1, 0).

(6) w, = 0, a # 1, N. The structure of these algebras can be schematically
described as, © (so(p,q) ® so(p’,q")) (see [17]). In particular, fow, = 0 we have
ton—2 © (so(p,q) ® so(p’,q")) with p+¢g = 2 andp’ + ¢’ = N — 1, which include
for ¢ = 0 the oscillating and expanding Newton—Hooke algebras [16] associated with
(14,0,1,...,1) and(-1,0,1, ..., 1), respectively.

(7) The fully contracted case in the CK family corresponds to setting all constants
w, = 0. This is the so-called flag algebsag o(N +1) =i...iso(1) [11].

The kinematical algebras associated with different models of spacetime [16] belong to
the family of CK algebras, and this indeed provides one of the strongest physical motivations
to study this family of algebras; in relation with the graded-contraction point of view, see
also [18] and [10].

3. Central extensions of the CK algebras

Our aim in this section is to obtain the general solution to the problem of finding all central
extensions for all the CK algebras and in arbitrary dimensions.
We write the independent commutation relations@f, ., (N + 1) (2.4) as

.....

N
[Qap, Qeal = Z Co.caij (3.1)
i,j=0
i<j
where, as before, in anf2.r, e < f is always assumed. The four types of structure
constants in (2.4) are given by

o cis i sis ij
Cab,ac - 8b80 Wab Cub,bc - 8a80 Cac',bc

= S;SZwbc a<b<c (3.2)

together withCl, ., = 0 if all a, b, ¢, d are different.
Any central extensioo,,. . ., (N + 1) of the algebraso,, .. ., (N + 1) by the one-

dimensional algebra of generatarwill have generator$Q2,,, &) and commutators:

.....

N
[Qup Qeal = Y Copaj + Hapca B [E, Qu] =0 (3.3)
i,j=0
i<j

where the extension coefficients to be determinggd.; (‘central charges’), must be
antisymmetric in the interchange of pairé andcd,

Ced,ab = —Qab,cd (34)
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and must fulfil the conditions

N

Y Copcaijes + Cotpesijap + Cofp pij.ca) = O (3.5)

l,i]<j0
which follow from the Jacobi identity. The ‘extension coefficients’ are the coordinates
(@(Qup, QLea) = aapcq) Of the antisymmetric rank-two tensar which is the two-cocycle
of the specific extension being considered and (3.5) is the two-cocycle condition for the
Lie-algebra cohomology. The classes of non-trivial two-cocycles associated with the tensors
a determine the dimension of the second cohomology grEdpG, R). The rest of this
section will be devoted to characterizing first the vector space of all tenssetisfying
conditions (3.4) and (3.5) for the CK algebsa,, .. .,(N + 1). Second, the question of
the possible equivalence of two extensions given by two tensoxdll be addressed and
solved. The reader who is not interested in the details of the calculation procedure may
skip the rest of this section; its results are summarized in theorem 4.1.

3.1. Setting up the problem: Jacobi identities

The antisymmetry ofx,, .4 Will be automatically taken into account by considering as
independent coefficients only thosg, ., with a < ¢ andb < d whena = ¢ (the conditions
a < b andc < d are always assumed).

The first step consists of solving th¢"'*2"/?) (see below) Jacobi identities (3.5)
understood as equations in the coefficiesmis.;. There is one equation for each possible
set of three index pairsb, cd, ef in (3.5) and looking at how many of these indices are
differentwe can group all Jacobi identities into four classes.

e One equation for the only possible seb, ac, bc) of six indices made up from three
different indices (permutations will lead to the same Jacobi identity).

e 16 equations, one for each possible set of six indices made up from four different
indices
(ab, ac, ad), (ab, ac, bd), (ab, bc, ad), (ab, ac, cd), (ac, ad, bc), (ab, ad, cd),

(ac,ad, bd), (ab, bc, bd), (ab, bc, cd), (ac, bc, bd), (ab, bd, cd), (ad, bd, bc), (3.6)
(ac, bc, cd), (ac, bd, cd), (ad, bc, cd), (ad, bd, cd).

e 30 equations, one for each possible set of six indices made up from five different
indices
(ab,ac,de), (ab, ad, ce), (ab, ae, cd), (ac, ae, bd), (ac, ad, be), (ad, ae, bc),

(ab, bc, de), (ab, bd, ce), (ab, be, cd), (ad, bc, be), (ac, bd, be), (ae, bc, bd),

(ab, cd, ce), (ac, bc, de), (ad, bc, ce), (ae, be, cd), (ac, bd, ce), (ac, be, cd), 3.7)
(ab, cd,de), (ac, bd, de), (ae, bd, cd), (ad, bc, de), (ad, bd, ce), (ad, be, cd),

(ab, ce,de), (ac, be, de), (ae, bc, de), (ad, be, ce), (ae, be, cd), (ae, ce, bd).

e 15 equations, one for each possible set of six indie#s cd, ef), (ab, ce, df), ...,
made up from six different indices.

The following relation, where it is understood ti(%’t) =0 if m < n, checks the above
splitting:

(N+DN/2\ _ (N+1 N+1 N+1 N+1
(¥ 292) a3 o ) (V)oY s
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Now we write explicitly the above equations. To begin with, the equation involving
only three different indices as well as the 15 equations with six different indices are easily
seen to be trivially satisfied due to (3.4) or to the fact tgf ., = O whenever(ab, cd)
are all different indices. The 16 Jacobi identities for four indiges b < ¢ < d lead to 10
equations, written here in bulk (later we shall write these equations in a neater way):

Uab,ad = —WaplUpe cd Uac,ad = PabXpe,bd

Cad,cd = —WcdQab,be Uad,bd = WedPXac,be

Yac,cd = Qab,bd Wed®ab,ac = Wab®bd,cd (3.9)
Cac,bd = —Wpclab,cd Yad be = 0

Waclap,cd =0 WpaQab,ca = 0.

(The 16 equations involve several paise = 0 andww'e = 0; in these cases the second
is clearly a consequence of the first, and may therefore be discarded.) On their part, the 30
Jacobi identities for five indices < b < ¢ < d < e, give rise to sixteen equations:

ab,ce = 0
Cgc,be = Wge,de = 0

Uad,be = ®ad,ce = 0

Cge.bd = Wgebc = Uge,cd = 0 (310)
Wpclap,de = 0 ®cdap,de =0 Ogeap,ca =0

WDdelac,bd = 0 Wdelad be = 0

Waplpe,de = 0 Wapl®pd ce = 0 Waplpe,cd = 0.

3.2. Solving strategy

The structure behind equations (3.9) and (3.10) is not readily apparent. In order to unveil
this structure and solve the central extension problem, we shall;

(1) sort out all extension coefficients (coordinatesxdinto disjoint classes,

(2) group all equations as related to the former classification and isolate coefficients
which can be simply expressed in terms of the remaining ones,

(3) state the form of the general solution in terms of basic extension coefficients from
which all others are derived, but which still may be subjected to some additional relations,
and

(4) analyse when an extension is trivial (or when two extensions can be equivalent).

It is convenient to put the coordinates of the generimto threetypes

Type | Coefficientsw,; 5. With three different indicesa < b < ¢ with the middle index
common to both pairs.

Types IIF/IIL Coefficientse,p e /tac.pe, With three different indicesa < b < ¢ where
the first/last index is common to both pairs.

Type lll. Coefficientsu,;, . With four different indicesa < b, a < ¢ < d.

Before studying them below, it may be worthwhile advancing now that, for all CK
algebras, those of type | will always correspond to two-coboundaries. Those of type IIF/IIL
will determine two-cocycles (which may be trivial) which result from the contraction of
two-coboundaries through the pseudoextension mechanism [19, 20] and those of type llI
will determine non-trivial two-cocycles which are not generated by contraction from two-
coboundaries (i.e. different from those in IIF/IIL).

The Jacobi equations (3.5) include a block of relations such as (3.9) for each set of
four different indicesa < b < ¢ < d and a group of equations (3.10) for each sefivé
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indicesa < b < ¢ < d < e. In order to deal with these equations simultaneously, it will

be convenient to start with any set of five indices and to consider jointly equations (3.10)
and five copies of equations (3.9), one for every choice of four indices out of the five
abcde, namelyabcd, abce, abde, acde and bede. The complete set of equations thus
obtained involves the 45 central extension coefficieniS.s, ®ap.ce, - - - With indices in the
set{a, b, c, d, e} (there are(3) = 10 type | coefficients, 1@ 10 type IIF+ IIL coefficients

and 15 (see (3.10)) of type IIl). We now write all equations (assumirgb < ¢ < d < e)

and group them in a convenient way. Out of these 45 coefficients, 30 are either equal to zero
or can be expressed by simple relations in terms of the remaining extension coefficients.
These 30 coefficients are calledcde-derived and are related to the remaining dbcde-
primary coefficients by the equations below, the left/right-hand sides of which involve only
derived/primary coefficients:

I/I Cac,ed = Qab,bd Cac,ce = Qab,be Cad,de = Qgb,be Upd . de = Upc,ce
(3.12)
”F/”F Cac,ad = Wablhe,bd Uad.ae = WacOed ce Opd.be = Wpclcd, ce (312)
L /1L Uae,pe = Weelac,be Uad,bd = WedXac,be Ape,ce = Wdelbd,cd (3.13)
”F/I Qab,ad = —Wab%pc,cd Uab,ae = —WabApe,ce
Uac,ae = —Wacled,de Upe,be = —Wpeled de (314)
”L/I Qad,cd = —Wcd%ab,be Cge,ce = —Weelab,be
Ugede = —WdeQab.bd Upe,de = —WdeOpe,cd (315)
i /”I Quc,bd = —Dpclab,cd Upd,ce = —WcdlUpe,de (316)
Uab,ce = Uac,be = Uge be = 0 Yad,be = 0
||| aae,bd = aad,be = O abe,cd = O (317)

Qac,de = Uad,ce = Xae,cd = 0.
Sorted out by their type, the 1hcde-primary coefficients are:

I Qab,be Qab,bd Qab,be Apc,cd Ape,ce Ccd,de
I Qab,ac qpe,bd Qed,ce (3.18)
I Qac,be Qpd,cd Clee,de
m Qap,cd Aap,de Qpe.de-
These primary coefficients are themselves constrained by the relations:
/1L WedQab,ac = ©ablbd.cd WdeQpe,bd = Opellce de (3.19)
WacQap,ca = 0 Wpdap,ca = 0 Wdeap,cd =0
1| Wpelgp,de = O Wedlab,de = O (320)
@ap@pe,de = 0 @pdQpe,de = 0 Wce@pe,de = 0

which follow from (3.9) and (3.10). Note that since th&s may be zero, we cannot express
any of these primary coefficients in terms of the others.

We have indicated the type of each group of coefficients, by the corresponding symbol
in each line, e.g. the rows in (3.18) correspond to the three types (I, IIF/IIL, 1ll) as given
above. Summing up, the Ibcde-primary extension coefficients are as follows.

e Those type | with the first paitbcde-contiguous (i.e. the indices in the first pair are
consecutive in the ordered sequenéede).

e Those type IIF/L with the first/last pair of indicescde-contiguous and thregbcde-
consecutive indices (of course, the later condition implies the former).
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e Type Il with two abcde-contiguous pairs.
All others areabcde-derived.

3.3. The basic extension coefficients

The next step in this process is to consider the above results for all possible numerical
values of the five indicesbcde since these numerical values appear as the indices labelling
the coordinates of the tenser Consider, for instance, the coordinaig; 14 in a case with,
say,N = 8. This is a 13457-primary one, which means that it cannot be expressed in terms
of another coefficient with indices taken from the set 13457. However, the same coefficient
appears as a derived one for the set of indices 12345, because the first index pair 13 are
not contiguous indices in the set 12345. It is clear that only those coefficients with the
form of (3.18) forall choices of five indices will be the really primary, or basic, ones; all
other can be ultimately derived in terms of these. We shall call thasic coefficientof

the extension and introduce a notation which highlights their role in the extensions. By
checking the former list ofibcde-primary extension coefficients, we readily conclude that

Proposition 3.1.The basic coefficients of the extension are as follows.
e Type | with the first pair of indices contiguous

Tae "= Quasiatic a=01....N—-2 c¢=a+2,....N N>2 (321

We remark that the indices i), cannot be consecutive; there avéN — 1)/2 basic type
| 7,. extension coefficients.

e Type IIF/IIL with three consecutive indices (and therefore with the first/last pair of
contiguous indices):

Al 1ai2 = Qaatiaat? a=01...,N-2 N =2 (3.22)
a572a71 = Ou—24.4-1a a=2,...,N N> 2. (3.23)

There are(N — 1) basic type Il extension coefficients for each subtype IIF and IIL.
e Type Il with two contiguous pairs of indices:

Br+1d+1 "= Xpp+1dd+1 b=01.... N-3 d=b+2,.... N-1 N > 3.
(3.24)

TheseB extension coefficients must have two not consecutive indices, and the index 0 cannot
appear in any3. The possible number of these extension coefficien{®/is- 1)(N — 2)/2.

These basic coefficients are still not independent and must fulfil the Jacobi relations
(3.19) and (3.20). In particular, for basic type Il coefficients, (3.19) now reads:

IIF/IIL Oat30h 1 g2 = Oat 105 1 0rn a=0,...,N—3 (3.25)
and (3.20) for basic type Il coefficients reduces to either
®Pp+1p+3 =0 for w = wp, Wp+1Wp+2, Wp+2Wp13, Wp1+4 (3.26)

where forb = 0/b = N — 3 the first/last conditiom, 8 = 0/w; 48 = 0 (which would read
woB = 0/wy 18 = 0) is not present, or to

®Ppr1a+1 =10 for w = wp, wpy2, W4, 0412 (3.27)

whereb + 1 andd + 1 are not next neighbours, with similar restrictions as before for the
extreme equations.
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The basic type Il coefficients aw®, ,11.44+2 and oy 114+3.4+24+3. BOth appear in the
extended commutators:
[Qanrla Q(/1 a+2] = a)a+19a+la+2 + o, a+l,a a+ZE (3 28)
[Qa+1a+3: Rat2a43] = ©a13Rat1a+2 + Yag1a+3.a42a+38
so both extension coefficients appear related to the genefator,.,, which explains
the notations:ozaﬂla{r2 = Qaatlaa+2 and ajHa_Jrz_ = Qatla+3at2a+3 in (3.22) gnd
(3.23). Type Il basic coefficients are grouped isingle coefficient,a;, (N — 2) pairs,
ab b, .. al o\ 1 ok, and anothersingle coefficient, af ,,, the single ones
appearing for the cases where the index pair does not have a predecessor or a successor.
Type Il basic extension coefficients, ;11441 appear in the extended commutators,

[Qpp+1, Quara] = tppr1.44+1E. (3.29)

Let us comment on the process of finding the derived coefficients in terms of the
basic extension coefficients. For type | coefficients, the only constraint is equation (3.11),
which says that all type | coefficients,, . with the sameuac indices are simply equal;
this iS aup be = Caatia+1c = Tac- CoONsider now the derived type IIF coefficients. They
must have three non-consecutive indices, and there are three possibilities, representatives
of which are the coefficients,; ., (wWhenab are contiguous bubd are not),«,...s (When
ac are not contiguous butd are) andw,. .. (When neithefac nor ce are contiguous). For

the first one, an equation in (3.14) giveg,..s = —®wpQpe.ca @nd choosinge = b+ 1
we obtaiNw.p.a = —Wap®pb+1p+1d = —WapTha; AS IN this caséd = a + 1 we obtain
Quatlad = —War1Tat1a fOrd = a+3,..., N. For the second, one of equations (3.12)

with b = ¢ — 1 giVeSayc.ua = Wac—1%c—1c.c—14; NOW as herel = ¢ + 1, and the extension
coefficient w.—_1..—14 iS equal thfCH, we finally obtaino,.,c11 = wuc_lach for

¢c=a+2,...,N—1 1In the third case, we use one of the equations in (3.14) with
d = ¢ + 1 to obtain directlyu . qe = —WucQcct1.c41e = —WacTee O c=a+2,...,N — 2
ande =c+ 2, ..., N. A completely similar process gives the derived type IIL.

Finally, type Il has a single class of derived coefficients which might be different
from zero: a,. s Whereab, bc and cd are contiguous pairs (so all foabcd indices are
consecutive, say a+1a+2a+3). These are given by equations (3.16) in term of the basic
ONEeS Ay 442,a11a+3 = —Watla+2®aa+lat2a+3 = —@at2Bat14+3. All other non-basic type
Il coefficients are necessarily equal to zero.

To sum up, forN = 2 there are no derived extension coefficients; for any> 3,
the complete list of derived extension coefficients is therefore given by the following
proposition.

Proposition 3.2.For N > 3, the derived extension coefficients are as follows.
e Type |, with the first pair non-contiguous
Qac.cd = Tad a=01...,N—-3 c=a+2,....,N—1 d=c+1...,N
(3.30)

e Type IIF/IIL, with three non-consecutive indices. There are three possibilities,
according to whether the first and second indices or the second and third are or not
contiguous:

Yga+lad = —Wa+1Ta+1d a = 0, 1, , N -3 d=a+ 3, e N
_ F — — _
Yac,ac+l = wac—lacc_,_]_ a = 0, 1, , N -3 c=a-+ 2, ey N 1 (331)
Quc,ae = —WacTee a=0,1,.. ,N 4 c=a+2,...,N-2
e=c+2,..., (hereN > 4)
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Ogetlcotl = —@ct1Tac a=01...,N-3 c=a+2,...,N—-1

aac,a+lc=wa+26a5a+l a:O,l,...,N—?) c=a+3,...,N (332)

gece = —WceTac a=01...,.N—-4 c=a+2,....,N-2
e=c+2,....,N (hereN > 4).

Type lll, with at least a non-contiguous pair. Only those of the fogm,, with abed
consecutive are possibly different from zero, and are given by

Qga+2,a+1la+3 = —Wa+2 ,Ba+la+3 a = 0» 17 ., N— 3 (333)
all other non-basic type Ill extension coefficients are necessarily equal to zero.

It can be checked that for any choice of the extension coefficients (satisfying the
equations (3.25), (3.26) and (3.27)) the expressions given above for the derived extension
coefficients satisfy all Jacobi equations. This is cumbersome but straightforward and will
not be done here.

3.4. Equivalence of extensions: two-coboundaries

So far we have determined the general form of a two-cocycle on the CK algebra
AAAAA oy (N + 1). Two two-cocycles differing by a two-coboundary lead to equivalent
extensions, so the next step is to find the general form of a coboundary. Let us make the
change of generatorR,, — 2, = Qu» + 1w 2, Where u,, are arbitrary real numbers.

The commutation relations for the new generat@fg, obtained from (3.3) with a given
two-cocyclea,; .4 are:

ab’ Z C;jb ch/ (aab,c‘d Z Cub (d/'LlJ> (334)

Therefore, the general expression of a two-cobound,argenerated by is

((S,u)ab cd = Z Cub cdMij- (335)
i,j=0

Using the expressions (3.2) for the structure constants, we obtain

I (Sﬂ)ab,bc = —Mac
HE /1L O ab,ac = @aplve | (S)ac.be = Opelhab (3.36)
1] (5M)ab,cd = (Sﬂ)ac,bd = (aﬂ)ad,bc =0.

The question of whether the previously found extension coefficients (or two-cocycles)
define trivial central extensions amounts to checking whether they have the form of a two-
coboundary, (3.36), which may then be used to eliminate the ceBttarm from (3.34).

This depends on the vanishing of the constastsin fact, the previous analysis classifies
the extensions into three types, which behave in three different ways.

e Type | extensions can be carried out for all CK algebras, as there are na;any
dependent restrictions for the basic type | coefficients However these extensions are
always trivial (for all CK algebras simultaneously, as seen in (3.36)), and will be discarded.
All expressions simplify considerably if we take this into account, as we shall do from now
on. This ‘uses up’ those coboundaries coming from the valiygsvith two non-consecutive
ac indices. Further equivalences (already for type II) are restricted to redefinitions of
generators with two consecutive indicés,, 1 — .1 = Qaa+1+ Haat1E (€€ (3.37)
and (4.4) below).
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e Type Il coefficients can appear in all CK algebras, as thedependent
restrictions (3.25) are not strong enough to force all these coefficients to vanish.
However, the triviality of these extensions is also;-dependent, and we will
see that the @V — 1) extensions corresponding to the basic extension coefficients
oy, al oy, ok oy g0k o n 1, @N_qy are all trivial for the simple algebras and all
non-trivial for the extreme case of the flag algebra. It is within this particular type of
extensions that @seudo-extensioftrivial extension by a two-coboundary) may become a
non-trivial extension by contraction.

e Type lll coefficients behave in a completely different way. Thgdependent
restrictions (3.26) and (3.27) on type Ill basic coefficients force many of these coefficients
to vanish (depending on how many constantsare equal to zero). Those remaining, once
they are present (that is, allowed) are always non-trivial. This means that there are no type
[l non-trivial central extensions coming by contraction from pseudo-extensions.

All that remains is to discuss the possible equivalence among type Il extensions.
The basic type Il values of the coboundary associated with the change of generators

! ~
Quttar2 = Qa+lu+2 = Qui1a42 + Hat1a42E aAre

lF /1L (5M),1F+1a+2 = Wa+1Ha+1a+2 (5ﬂ)5+1a+2 = Wa+3Ha+1a+2- (3.37)

We remark that (as it should) these coboundaries automatically satisfy equation (3.25). We
must study now how the freedom afforded by these changes can be used to reduce to zero
some of the extension coefficients.

Consider first the single;;, the value of which can be arbitrary. We see in (3.37)
that as long asw, # 0, we can reduce it to zero by using the coboundagy. Then
the extension corresponding to the basic coefficieftis non-trivial whenw, = 0 and
trivial otherwise. Likewise, the extension corresponding to the basic coeffigfent,, is
non-trivial whenwy_1 = 0 and trivial otherwise. The possible triviality of these extensions
is thus completely governed by two constamtswhich play a special role: the second
and the last but oney_;.

Let us now look at the case of pair$, , .. ,, @%, ,,,,. Here the situation is controlled by
two constantsy;, namelyw,,1 andw,,3. When they are both equal to zero, equation (3.25)
is automatically satisfied, irrespective of the values of the pair of coefﬁciehtg 42 and
ol 1, which cannot be modified by adding a coboundary; in this case the cocycles
associated with these coefficients are simultaneously non-trivial. When only one of the
constantsy, 1 andw,, 3 is equal to zero, equation (3.25) forces the vanishing of one of the
coefficients in the pair, while the other can be reduced to zero by the appropriate coboundary
coming fromu,11442. Finally, when both constants, ;1 andw,, 3 are different from zero,
then (3.25) enforces the possibility of simultaneously reduaifig ., , ande’, ;. , to zero
by using the coboundary coming from,,1..2. Therefore the two two-cocycles extensions
corresponding to the two basic coefficient$ ,,,, ande?, ., are non-trivial when both
wq+1 = 0 andw, 3 = 0; the two extensions are simultaneously trivial otherwise.

Once the coboundary type | coefficients are removed, the contents of propositions 3.1
and 3.2 may be summarized by table 1.

4. The second cohomology groups of the CK algebras

4.1. The structure of the central extensions of a CK algebra

If we completely disregard the type | extensions, which are trivial for all the CK algebras, all
the results obtained in section 3 can be summed up in the following theorem, which contains
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Table 1. Basic and derived type Il and Il extension coefficients for CK algebras.

Basic coefficients and relations Number of them
Type IF/IL az[z:+la+2 ‘= Qaa+laa+2 atl;a+1 ‘= Qga+2,a+la+2 Z(N - 1)
a=01...,N-2 N=>2
“)a+30‘:+1a+2 = wa+1l¥,§+1ﬂ+2 a=0,...N-3
Type llI Bo41d+1 ‘= Appildd+l (N—=1)(N-2)/2
b=01...,N-3 d=b+2,....,N-1 N=>3

wpf = Wp110p128 = Wpy20p13f = wpraPf =0 fOr B = Bri1p43
wpf = wpi2f = waf = wy28 =0 for B = Byi1a+41
withd =b+3,...,N-1

Derived coefficients

F
Type IFIL - atuc,ac41 = Wac—10 oy

a=01...,.N-3 c=a+2,...,N—1 N >3
aac4a+1c:wa+2£aé‘a+l
a=01...,.N-3 c=a+3,...,N N=>3

Type 1l Qga+2,a+la+3 = —Wa+2 Ba+1a+3 a=01...,N-3 N >3

the complete solution to the problem of finding the central extensions of CK algebras:

Theorem 4.1The independent non-zero commutators of any central extesign. .,
(N + 1) of the CK Lie algebrao,,. ., (N + 1) can be written as

[Qab» ch] = —Qq

[Qab’ Q, b+l] = WapSpp+1 + @y b—la[fb_;,_]_E
[Qab, Qac] = @apQpe forc>b+1

.- (4.1)
[Qacv Qa-‘rlc] = a)a-‘rlcQaa+1 + Wa++2c%; 4415
[Qac, Qbe] = WpeQap forb>a+1
[Q¢1u+1a S.zcc-kl] = /3544—10-5-1E [Qa a+2 S241-5—101-&-3] = _wa+2ﬂu+1u+3E
where w,, = 1. The extension is completely described by a number of extension
coefficients.

e A single type Il coefficientef;, which produces an extension which is non-trivial if
w2 = 0 and trivial otherwise.

e (N—2) type Il pairs,af,, oty ...; af oy 1. 0% »y_1. Each pair of coefficients must
satisfyw,zal, 1, = was10k 4 .. The two extensions corresponding to the pir, .,
andozjﬂa+2 are both non-trivial whemw,,; = 0 andw,,3 = 0. The two two-cocycles are
simultaneously trivial otherwise.

e A single type Il coefficientes,_, ,,, Which produces an extension which is non-trivial
if wy_1 =0 and trivial otherwise.

e (N — 2) type lll extension coefficient$is, Boas, ..., Bv_2n, Satisfying

@Ppr1p13 =0 for w = wy, Wp11Wp12, Wp12Wp43, Wpy4 4.2)

where when eitheb = 0 or b = N — 3 the first or last condition, which would read
woB = 0 or wy;18 = 0 is not present. The extension corresponding to any of these
non-zero coefficients is always non-trivial.
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e (N —2)(N —3)/2 type Ill extension coefficientBi4, Bis, - . ., Bin; B2s, - - - Bons - - -5
...; Byv—3ny Whose indices differ by more than two. The coefficigpt;,., satisfies

wﬂb+1d+1 =0 forw = Wp, Whi2, W4, Wi42 (43)

with similar restrictions as to the actual presence of the equations involving the non-existent
valueswg or wy,1. The extension corresponding to any of these non-zero coefficients is
always non-trivial.

All type Il extensions come from the pseudo-cohomology mechanism [19, 20]; if
wpy1 # 0 # wp3 We obtain from (4.1)

1
[Qap41 Qapr2]l = api1 (Qb+1b+2 + =010 E)
Wp+1 (4 4)

1
L =
[Qp+1¢, Qpt26] = wpt2e <Qb+1h+2 + %28
b+3

so we may remove the extension coefficients by means of a redefinition of the generator

: . : F _ 1 L
Q1512 given by the one-cochain of non-zero coordlna(tﬁ-gﬁozbﬂb+2 = 2% 12

When w1 (wp43) goes to zero the extension given &, ,, ., (o} 4, ,) Might be non-
trivial (because the one-cochain from it comes divergesayt,/w,1 does not). Due to

the Jacobi identity (represented here by the equatione/, ;,., = wp+10},4,.,,) the non-
trivial extension exists if bothv,,1 = wpy 3 = 0. In terms of the standard triangular
arrangement of generators, it is worth remarking that each type I coeﬁiaﬁqtb+2
appears only in the extended commutators of two horizontal neighbours in the columns
of Qopr1, Qopso, While each type I coef“ficientx,fﬂb+2 appears only in the extended
commutators of two vertical neighbours in the rowsS®f, 1x, 2,.2v. The corresponding
extension is non-trivial only when both,,; = w,.3 = 0; this means that the algebra has
two different semidirect structures (cf section 2). This is exhibited by the two rectangle
boxes in the following diagram, where we have shorteméd= o/ ,, , anda’ = o}, 1,

and we have also indicated thg factors which appear in these extended commutators for
the generators which are inside one of the boxes but outside the other:

Q)ObO(F

Qo1... Qop Qopr1 X% Qopy2 Qop+3 Qopya ... Qon
Q Q e’ ¢ Q Q Q
b—1b b-1b+1 0 Qp1py2 | Rp-1643  Qp—1p44 .- b—1N
—
o
Qppr1 —y Qppy2 Qppi3 Qppra ... Qp N
Qpripr2 | Lprav+s QLpripa - Lpran
\L ak »l/ wb+3b+4(¥L »L wb+3N0lL
Qpi2p+3  Spr2pra - Spion
Qpi3pra ... Qpian
Qy_1n.

4.2. The dimension of the second cohomology groups of the CK contracted algebras

Theorem 4.1 contains all the necessary information to determine easily the dimension of the
obtained as the sum of a number of completely independent contributions, each one related
to the vanishing of specific groups of constantsas follows.

e 1 whenw, = 0, with two-cocycle determined by the basic coefficieff.
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e 2 for each pair of next-neighbour zero constamais,—= w3 = 0, w2 = wq =0, ...,
wy_2 = wy = 0. The two-cocycles appearing with the vanishing paitr; = w,;3 = 0
are determined by basic extension coefficienfts, ,,, anda , . ,. This might amount to
a subtotal of 2V — 2) when all pairs of second neighbours are zero, i.e. when all constants
w; are zero.

e 1 whenwy_1 = 0, with extension coeﬁiciemﬁ_m.

e 1 for each group of zero constarf®,, w2, wp14} OF {wp, W11, Wpi3, Wpra} With
extension coefficienB, 1,4 3.

e 1 for each group of zero constants,, wyi2, wg, wgi2} With extension coefficient
Britarrford=b+3,...,N —1.

As mentioned after (4.2) and (4.3), the literal application of the two last rules may
apparently involve the constantsy, wy. In these cases the corresponding conditions
involving these inexistent values should be disregarded.

We can translate the previous rules into a closed formula for the dimension of the second
cohomology grougH2(so,, ..., (N + 1), R). Let§; be defined by

1 w; = 0

=1, v 20 Gi=1,...,N) (4.5)

then dimHZ(sowlmwN (N + 1), R) is given in terms of the sequenéeg, 3, ..., Sy by

N-2
diM(H? (500, 0y (N + 1), R) =82+ 8y 1+2)_ 8idis2
i=1

=

N—2 N-3 N
+ Z 8i8ivaldiz2 + 8iv18i13 — 8iy28i118i43] + Z Z 8i8i+20;8j12  (4.6)
i1 i=1 j=i13

wherew; =0 (§; = 1) fori > N. For instance, iflo, =0V i =1,..., N (flag algebra)
then all§; = 1, hence all terms in (4.6) contribute and we obtain
N-3

dim(H?(s00.0(N +1).R) =2+2(N —=2) + (N =2+ Y (N —i —2)

i=1
(N-2(N -1 N(N +1)

2 B 2

Each term in formula (4.6) is related to a given extension coefficient as stated in theorem 4.1
and the preceding rules.

To effectively apply the above rules, it is convenient to browse through the list of
possible extension coefficients and to see whether each of them is allowed/trivial for the
algebra we are dealing with or not. As a first example, consider the algedrgo o(5) with
wp # 0. For any CK algebrao,, v, «,...(5), the possible extension coefficients are,,
aby, ak,, oy, aks, aly; Bis, Pia, B2a. In this case, it is clear that the type Il non-trivial ones
are onlyaf,, ak, (asw; = wz = 0) andaf, (as herewy_1 = wz = 0). Type lll extension
coefficient 813 is allowed and therefore gives a non-trivial cocycleaas= 0, w3 = 0 and
wq = 0. Type Il extensiorB4 is not allowed, sinca, andw;z are not simultaneously equal
to zero. Type Ill coefficienp,, is allowed (and therefore non-trivial) as = 0, w3 = O.

So the dimension of the second cohomology group is equal to 5 in this case.

The dimension of{? for many other algebras can be derived from these rules. Although
in the next section we shall give explicitly all the extended CK algebras up to 4, we
mention here the result for some interesting algebras (see section 2). In some cases these
cohomology groups have been known for a long time.

=2(N-1)+ 1 4.7)
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(1) When allw; are different from zero, all type Ill coefficients are equal to zero, and
all type Il (which can be different from zero) are coboundaries. Therefore, the second
trivial in accordance with the Whitehead lemnfa?(G, R) = 0 if G is semisimple.

(2) If only the first constant is equal to zer@; = 0, we see that the inhomogeneous
algebrasiso(p, q) wherep + g = N (e.g. Euclidean and Poin&rhave no non-trivial
extensions except in the case= 2, where the first constant also plays the role of the last
but one, and there is a single extension coefficigfht This result is just a rephrasing of the
statement that in this case every local exponent is equivalent to zeré for2, as found
by Bargmann [3] in his classical study.

(3) Whenw; = w, = 0 (all others being non-zero) the twice inhomogeneous algebras
iiso(p,q) have a non-trivial extension coefficient; (this is just the mass for the Galilei
algebra, which parametrises its second cohomology group). Generically, this is the only
non-trivial extension in this family of algebras, though in the lower dimensional cases
N = 2, 3 additional non-trivial extensions appear, as seen in the examples below.

(4) The flag algebrai ...iso(1) is the most contracted algebra in the CK family, and
corresponds to atb; = 0. In this case, basic type Il or lll extension coefficients, whenever
present, lead to non-trivial extensions. Furthermore, all the conditions that these coefficients
must satisfy are automatically fulfilled, as a consequence of the vanishing ®f. allhere
are AN — 1) type Il and [N — 1)(N — 2)/2] type Il coefficients in this case, so that

o(N + 1), R) = REN-DHN-D(-2/2 _ rl()-1] 4.8)

.....

.....

4.7)).

To conclude this section we mention that, had we considered graded contractions from
so(N + 1) beyond the CK family, we would have found a larger set of algebras with the
[(N + 1)N/2]-dimensional Abelian algebra as the most contracted one. Since for it all
equations (3.5) are trivially satisfied and only the antisymmetry conditions (3.4) remain, the

cohomology group of this Abelian algebra has dimeng{Sit") ((Ngl) — 1) /2.

5. Examples: all central extensions forN = 2, 3,4

We extract from the general solution in theorem 4.1 the central extensions for all the CK
algebraso,, .. ., (N +1) for N = 2, 3, 4 [15]. We remark that our results cover in a single
stroke a large family of Lie algebras; in particular, the famiy,, ., v,.«,(4 + 1) contains

all relativistic and non-relativistic 3 1 kinematical algebras, the cohomology of which can
be then read off directly.

5.1. 500,.0,(3)
There are two central extension coefficients of type II:

gy = @0212 afy = 00102 (5.1)
which are not constrained by any additional condition. The Lie bracke®s gf,,(3) are

[Q01, Q2] = 01912 + afHE [Q01, Q12] = —Q02 [Q02, Q2] = w2Q01 + 51 E.
(5.2)
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The triviality of any such extension is governed by the second and last-but-one constants
in the listw;. In this case, these are the second and the first. '&ﬁyis trivial if w, # 0,
andal; is trivial if w; # 0. This is exhibited by the redefinitions

ak af,
Qo1 —> Qo1+ a?l o) [0)) ?ﬁ 0 Qo — Qo+ a)l2 = w1 75 0. (53)
2 1

Thus, dimH?(s0,,..,(3), R)] is equal to:

e O for the simple Lie algebraso(3) andso(2, 1) (both w; andw, # 0),

e 1 for the two-dimensional Euclidean algebra, which appears for the congfars
(extension coefficient{,) and (1, 0) (extension coefficient/;),

e 1 for the (1 + 1)-Poincaé algebra, which also appears twice,(@s—1) and(—1, 0),
respectively with extension coefficientg, andaf;,

e 2 for the(1+1)-Galilei algebra, which appear for constaf@s0), with both extension
coefficientsaf, and ;. Physically, these extensions are parametrized by the mass and a
constant force (see [7] and references therein and [21]).

5.2. ﬁwl’wz,aa (4)

The full set of extension possibilities appears first in this case. However, there are some
non-generic coincidences. There are four basic extension coefficients of type Il, and one of

type lll:

L _ Fo_ L _ Fo_ _
o) = o212 0y = o102 oy = 011323 ooy = 1213 B13 = o123
(5.4)
which must satisfy
F L
w3 = W10y w1w2f13 =0 waw3f1z = 0. (5.5)

Then, equations (4.1) give the commutation ruleS®y, ., .,(4):
[Qo1, Qo2] = w112 + af,B [Qo1, Q12] = —Q02 [Q02, Q12] = 2201 + o B
[Q01, Qo3] = w1913 [Q01, Q13] = —Q03 [Q03, Q3] = w3(@2901 + @ E)
[Q02, Qo] = w1(W2Q03 + A43E) [Q02, Q23] = —Q03 [Qo3, Q3] = w302 (5.6)
[Q12, Qu3] = w23 + a43E [Q12, Q23] = —Qu3 [Q13, Q23] = w3Q12 + afHE
[Qo01, Q23] = B13E [Q02, Q13] = —w2p13E [Qo03, Q12] = 0.
The extension coefficient{; produces a non-trivial cocycle when the second constant
w, = 0, the extensiorJ; is non-trivial when the last-but-one constat @gain in this case)
is zero and the extensions given &Y, and of, are non-trivial whernw; = w3 = 0. The
extension determined b§3 is only present (see (5.5)) when = 0 or whenw; = w3 = 0,
and whenever it appears, it is non-trivial. The redefinition of generators displaying the

triviality of type Il extensions is:
L

Qo]_—) Qo;["‘ aOlE if a)z;«éO
w2
L
912—>§212+%E if w30
3
o (5.7)
Qir —> Qo+ 22 if w1 #0
w1
aF
Qo3 —> Qo3+ 23E if wg;«éO.

w2
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Note that whenw; and w3 both differ from zero, equation (5.5) guarantees that both
expressions for the redefinition 6f;, indeed coincide.

To conclude the analysis we now give dif(50,,.0,.0;(4), R)]:

e 3 for w, = 0 with eitherw; or wz non-zero: non-trivial extension coefficient§,, o4,
and ;3. Examples here are botR+ 1) Newton—Hooke algebrast1, 0, 1), (1, 0, £1) and
the (2 4+ 1) Galilean oneiiso(2) (0,0, 1), (1,0,0). Alsoiiso(1,1) (—1,0,0), (0,0, -1
andr © (so(1,1) ®so(1, 1)) (-1,0, -1).

e 3 for w1 = w3 = 0 andw, # 0; non-trivial extensions are;,, o+, and 13. Here we
find the (2 + 1) Carroll algebra0, 1, 0) andii’so(1, 1) (0, —1, 0).

e 5 for the most contracted algebra in the CK family with = w, = w3z = 0; it
corresponds to the flag space algehtao(1).

¢ O for all the remaining algebras. Up to isomorphisms these include the semisimple ones
so(4) (once),so(3, 1) (four times),so(2, 2) (three times), the three-dimensional Euclidean
iso(3) (two times) and Poincéralgebrasso(2, 1) (six times).

For convenience we include below the standard triangular diagram with all the extended
commutators foBo,, «,.«,(4). An arrow between generatorsand B means that a central
E-term, with coefficient indicated near the arrow, is added to the non-extended commutator
[A, B]. Inthe usual kinematical interpretation, the generators may be translated as H
(Hamiltonian),Q0, — P1, Q03 — P> (Momenta)21, — Ki, Q13 — K, (boosts) Qo3 — J
(rotation).

F F
12 w1053
Qo2

Qo1 Q03

L
a)gOlOl

Q023

We recall that up to now we have referred in this paper to the cohomology groups
of Lie algebras and not of groups. As mentioned they do not necessarily coincide
[3, 8, 9], as illustrated by the standard example of th& + 1) Galilei group (our
80.0.1)(4) for which dim[H?(G(2+ 1), U(1))] = 2 although diml/2(G(2+ 1), R)] = 3,

a fact known [7] (see also [22] for a recent discussion) already for 25 eav¥ith

Qo1 = H and space rotation generatf; = J, we see that the algebra commutator
[H, J] admits an extension throughys but that the compactness condition on the space
rotation generator, relevant for the Galilei group, forces the coefficighs to disappear.
This is because under a rotation generated/lig the extended algebrd transforms by

1 This well known result has attracted a renewed interest [23], specially in relation with the absence of non-
relativistic planar systems with exotic angular momentum (anyons) [24].
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H — exp(0J)Hexp(—0J) = H — 0B13E. SinceJ is compact the rotationd8 = 2x

(with wg3 = 1) andd = 0 should coincide, which forceg;3 = 0 and reduces in one
dimension the group cohomology. In general, within the CK family of groups as obtained by
exponentiation of the matrix representation (2.5) of the CK Lie algebra, the one-parameter
subgroup generated b®,, is compact ifw,, > 0 and non-compact otherwise. This
implies that the extension coefficiefi} 1.1, which appears in the extended commutator
[Rua11, Qeer1] = Bar1c41E for the algebra, does not correspond to a group extension
whenever at least one of the generatfg, . ; or Q..,1 corresponds to a compact one-
parameter subgroup, that is when eithgr; > 0 or w.,1 > O.

53 ﬁwlw(uz,w;;.am (5)

There are six basic extension coefficients of type Il and three of type Il

L _ L _ L _
Qg1 = (02,12 1o = (1323 Qp3 = (02434

Fo_ Fo_ Fo_
o)y = 00102 03 = 01213 O34 = 002324 (5.8)
B13 = o123 B1a = o134 Boa= 01234

verifying the additional conditions:

waor]p = w104 w4055 = w0tz

w1w2p13 =0 waw3f13 =0 w413 =0 (5.9)
w214 =0 w3Pf14=0 '
w1f24 =0 wow3f24 =0 w3w4fos = 0.

Therefore the Lie brackets of the extended CK algeBmas ., w..,(5) are

[Q01, Qo2 = 01212 + 01,E [Q02, Q12] = 02Q01 + o, E

[Q12, Q3] = w2203 + a3 [Q13, Q23] = w312+ a1 E

[Q23. Q24] = w3Qas + 24, E [Q24. Q34] = W43+ 253

[Q13, Q14] = w2(03Q34 + a3, E) [$204, ©14] = W304(@2Q01 + @51 B) (5.10)
[Q02. Qogl = @1(029223 + a33E) [Q14, Q24] = 0a(03Q12 + a1, E)

[Q03, Q04] = w102(w3R34 + 24 E) [Q03, Q13] = w3(w2Q01 + @1 E)

[Q01, Q23] = B13E [Q02, Q13] = —w2P13E [Q01, Q34] = P14E
[Q12, Q34] = B2uE [Q13, Q24] = —w3P24E

the remaining commutators being as in the non-extended case (2.4).

We display the explicit result for each CK algehya,, 4, v, (5) in table 2. The
first column shows the number of simple contractions (the number of coefficignset
equal to zero). The second schematically names the centrally extended Lie algebras. The
third specifies the coefficients, different from zero together with the non-trivial central-
extension coefficients allowed. Finally, the fourth gives difi{s0,, u,.0s.0.(5), R)] as a
sum of the type Il and type Ill contributions. Note that the only kinematical algebras
in (34 1) dimensions which have non-trivial central extensions (and hence projective
representations) are th8 + 1) oscillating Newton—Hooké1, O, 1, 1), expanding Newton—
Hooke (—1, 0, 1, 1) and Galilean(0, 0, 1, 1) algebras, all of them of ‘absolute time’ [16].
This table can be used as an example of how to computeHfing], R)] from theorem 4.1.



1392 J A de Azafraga et al

Table 2. Non-trivial central extension$0.,;,wy,wz,wq () Of 50w wp.w3,04(5). The constantsy;
appearing explicitly are assumed to be different from zero.

# Extended algebra (CK constants) (Non-trivial ext. coefficients) Hfn
0 5005 (w1, w2, @3, w4) 0
so(4,1)
50(3,2)
1 iso(4) (0, w2, w3, ws) OF (w1, W2, w3, 0) 0
is0(3,1)
is0(2,2)
f6(s0(3) ® s0(2)) (w1, 0, w3, wsg) [aél] or 1+0
f6(s0(3) @ so(1, 1)) (01, 02, 0, @4) [ad,]

f6(s0(2, 1) @ so(2))
fe(s0(2,1) ®so(1, 1))

2 iiso(3) (0,0, w3, wa) [aél] or 1+0
iiso(2,1) (w1, w2, 0, 0) [“:‘fa]
ii’so(3) (0, w2, w3, 0) 0
ii’so(2,1)
it4(s0(2) ® 50(2)) (0, w2, 0, wa) [afz, afz, a§4; B24] OF 3+1
54(3‘0(2) @ so(1, 1) (1,0, w3, 0) [ody, ads, ads; Bl
ita(so(1,1) ®so(l, 1)
fe(iso(2) ® so(2)) (@1, 0,0, wg) [aél, a3F4; B14] 2+1

te(iso(2) ® so(1, 1))
fe(iso(1,1) & so(l, 1))

3 iiiso(2) (0,0,0, ws) [aél, afz, ozfz, a§4; B1a, Boa) OF 442
iiiso(1,1) (w1,0,0,0) loby, abs, aly, ok, Bis, pr4]
iii’s0(2) (0,0, w3, 0) lagys o3, oks; Pas, Bod] OF 3+2
iii’so(1, 1) (0, w2, 0,0) lafy, oy, aky; 13, Bodl

4 iiiiso(1) (0,0,0,0) lagys oy 0dy, ady, ks ady; 13, Pra, B2a]  6+3

6. Concluding remarks

We have characterized with generality the second cohomology grE#gso,,, ., (N +
1), R) of the CK family of algebraso,, ., (N + 1), which is a particular subfamily of
all graded contractions of theo(N + 1) algebra. The algebras in the CK family can
be described in a simultaneous and economical way usimgal ‘contraction’ coefficients
w1, w2, ..., wy. The procedure also exhibits the origin of the various central extensions and
in particular differentiates clearly those which come from contractions of trivial extensions
from those which do not.

It is well known that, by Whitehead’s lemma, all semisimple Lie algebras have trivial
second cohomology groups and that by the Levi—-B&l’ theorem any finite-dimensional
Lie algebrag is the semidirect extension of a semisimple algebra and the radigal 8ince
inhomogeneous algebras come from contraction, our procedure may be applied to find the
cohomology groups of other inhomogeneous algebras as well; in particular, one could start
from the real simple algebras of thg and C, series. There are several CK families of
algebras (see [25] for a cursory description) @my simple real Lie algebra appears as a
member of some family. We have discussed here only the orthogonal CK family, which
include the simple algebras(N + 1) andso(p, ¢) in the B; and D; series, as well as their
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(quasi-simple) contractions. A similar approach would lead to a complete characterization
of the second cohomology groups for quasi-simple algebras of inhomogeneous type obtained
by contraction from other real simple Lie algebras. This will be matter for further work.

Another possible application of the contraction method is the search for Casimir
operators of inhomogeneous algebras. The number of primitive Casimirs of a simple algebra
G is equal to its rank, which in turn is equal to the different primitive invariant polynomials
which can be constructed of. Thus, the graded contraction approach allows us, in
principle, to find central elements of the enveloping algebras by contracting the ofiginal
Casimir—Racah operators. Clearly, the procedure does not permit us ailfitneg Casimirs
of anarbitrary contraction of a simple Lie algebra of rahksince the final step is always
an Abelian algebra (hence with as many primitive Casimirs as generators) agd>dim
However, within the CK family the number of functionally independent Casimirs remains
constant (see [26]). This provides another justification for the name ‘quasi-simple’ given to
its members, and explains in a simple way why e.g. the number of Casimir operators for
the simple de Sitter algebra and the non-simple Poioae is the same.

The same kind of approach we have pursued here for studying the second cohomology
groups of the CK algebras has been developed to study their deformations (in the sense
of [27-29]). In particular, a whole family of deformations of inhomogeneous Lie algebras
[30], or working to first order, of the corresponding bialgebras [31], has been found. The
semidirect structure of the ‘classical’ C; = 0 inhomogeneous Lie algebras becomes
[32] a bicrossproduct [33] structure for their CK deformed counterparts. Whether or not
this extends to the deformations of other semidirect structures associated with the vanishing
of anyw, requires further study. A related problem would be the analysis of the structure of
the deformation of inhomogeneous Lie algebras from the present graded-contraction point
of view, for which central extensions should appear as cocycle-bicrossproducts. These
guestions are worth studying.
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